1 Identification and Consistency

Let
\[y_i = \theta_i g(X_i) \] (1)
be a production function for area \(i \) given a \(J \)-element vector of inputs \(X_i \) and a scalar random productivity parameter \(\theta_i \). Let
\[C(y_i) = w_i'X_i \]
be a cost function. The goal of the area hospital/decision maker is to minimize cost subject to a quantity demand:
\[
\min_{X_i} C(y_i)
\text{st } y_i = \theta_i g(X_i).
\]
We can write the firm’s optimization problem as a Lagrangean equation as
\[
L = w_i'X_i + \lambda [y_i - \theta_i g(X_i)]
\]
with derivates,
\[
\frac{\partial L}{\partial X_i} = w_i - \lambda (y) \theta_i g_X(X_i) = 0 \tag{2}
\]
(\(g_X(X_i) = \begin{bmatrix} \frac{\partial g}{\partial X_{i1}} \\ \frac{\partial g}{\partial X_{i2}} \\ \vdots \\ \frac{\partial g}{\partial X_{iJ}} \end{bmatrix}_{J \times 1} \))
is the vector of “marginal products” before \(\theta_i \).
\[
\frac{\partial L}{\partial X} = y_i - \theta_i g(X_i).
\]
Equation (2) implies that

\[X_i = g_X^{-1} \left(\frac{w}{\lambda(y) \theta_i} \right) \]

(3)

if \(\theta_i \) is known at the time of the input decision and

\[X_i = g_X^{-1} \left(\frac{w}{\lambda(y) E \theta_i} \right) \]

(4)

if \(\theta_i \) is not known at the time of the input decision (where

\[g_X^{-1}(z) = \begin{pmatrix} \left(\frac{\partial g}{\partial X_{i1}} \right)^{-1}(z_1) \\ \left(\frac{\partial g}{\partial X_{i2}} \right)^{-1}(z_2) \\ \vdots \\ \left(\frac{\partial g}{\partial X_{iJ}} \right)^{-1}(z_I) \end{pmatrix} \]

for

\[z_j = \frac{w_j}{\lambda(y) \theta_i} \text{ or } \frac{w_j}{\lambda(y) E \theta_i}, \]

depending on whether \(\theta_i \) is known).

Let \(\hat{g}(X) \) be a nonparametric kernel estimator of \(g(\cdot) \). For example, we might set

\[\hat{g}(X) = \frac{\sum y_i K(X_i - X)}{\sum K(X_i - X)}. \]

(5)

Define

\[g_j(X_i) = \frac{\partial g(X_i)}{\partial X_{ij}}. \]

Theorem 1

\[\text{plim} \hat{g}_j(X) > g_j(X) \quad \forall j \]

if equation (3) is the appropriate input decision, and

\[\text{plim} \hat{g}_j(X) = g_j(X) \quad \forall j \]

if equation (4) is the appropriate input decision.

Proof. Think of equation (5) as

\[\hat{g}(X) = \sum y_i K^*(X_i - X) \]

(6)

where

\[K^*(X_i - X) = \frac{K(X_i - X)}{\sum K(X_i - X)}. \]
Substituting equation (1) into equation (6) leads to
\[\hat{g}(X) = \sum \theta_i g(X_i) K^*(X_i - X). \]

A first order Taylor series approximation implies
\[\hat{g}(X) = \sum \theta_i \left[g(X_i (E\theta_i)) + g'_X(X_i (E\theta_i)) X_i \theta \right] K^*(X_i - X) \]
\[= \sum \theta_i g(X_i (E\theta_i)) K^*(X_i - X) + \sum \theta_i g'_X(X_i (E\theta_i)) X_i \theta \theta - E\theta_i) K^*(X_i - X) \]
where
\[g'_X(X_i (E\theta_i)) = \frac{\partial}{\partial X} g(X_i (E\theta_i)), \]
\[X_i \theta = \frac{\partial X_i \theta}{\partial \theta}. \]

Taking plims leads to
\[\text{plim} \hat{g}(X) = \text{plim} \sum \theta_i g(X_i (E\theta_i)) K^*(X_i - X) \]
\[+ \text{plim} \sum \theta_i g'_X(X_i (E\theta_i)) X_i \theta \theta - E\theta_i) K^*(X_i - X) \]
\[= E \theta g(X (E\theta)) + g'_X(X (E\theta)) EX \theta \theta (\theta - E\theta). \]

If \(X \) is exogenous, then \(X \theta = 0 \), and
\[\text{plim} \hat{g}_X(X) = E \theta g_X (X (E\theta)) = g_X(X). \]

If \(X \) is endogenous, then differentiation of equation (2) with respect to \(\theta \) implies that
\[X \theta = -[\theta g_{XX} (X)]^{-1} g_X(X) > 0. \]

Plugging \(X \theta \) into equation (7) leads to
\[\text{plim} \hat{g}_X(X) = E \theta g_X (X (E\theta)) + g'_X(X (E\theta)) EX \theta \theta (\theta - E\theta) \]
\[= E \theta g_X (X (E\theta)) - g'_X(X (E\theta)) E [g_{XX} (X)]^{-1} g_X(X) (\theta - E\theta) \]
\[= E \theta g_X (X (E\theta)) - E [g_X(X) (\theta - E\theta)] > E \theta g_X (X (E\theta)) \]

because \(X \theta > 0 \) and \(g_{XX}(X) < 0. \)

Theorem 2 If either \(X \) is exogenous or \(g(\cdot) \) is homothetic in \(X \), then
\[\text{plim} \frac{\partial g(X)}{g_k(X)} = \frac{g_j(X)}{g_k(X)} \forall j, k. \]
Proof. If \(X \) is exogenous, then \(\hat{g}_X(X) \) is consistent which implies the ratio is consistent. If \(g(\cdot) \) is homothetic in \(X \), then the asymptotic bias in \(\hat{g}_X(X) \) can be written as

\[
E[g_X(X)(\theta - E\theta)] = g_X(X(E\theta))E\left[\frac{g_X(X)}{g_X(X(E\theta))}(\theta - E\theta)\right]
\]

with

\[
\frac{g_X(X)}{g_X(X(E\theta))} = b(\theta)1
\]

where \(b(\theta) \) is a scalar and 1 is a vector of 1’s. Thus the bias is proportional to \(g_X(X(E\theta)) \) and cancels in a ratio. \(\blacksquare \)

2 Estimation Methodology

A significant problem in estimation is that, in general, \(g(X) \) has a large dimension. This will make nonparametric estimation too difficult. We might write a production function

\[
g(X) = \tilde{g}(Z, \alpha) \psi(A, N)
\] (8)

where \(Z \) is the vector of the amount of each input excluding anesthesiologists and CRNAs, \(A \) is the amount of anesthesiologists, and \(N \) is the amount of CRNAs. We could give \(\tilde{g}(\cdot, \cdot) \) a parsimonious flexible functional form (e.g., first or second order Taylor series approximation) depending on a small set of parameters \(\alpha \) and specify \(\psi(\cdot, \cdot) \) nonparametrically. We can take logs and then use a nonparametric method of moments (Ichimura and Lee, 1991) estimation procedure by solving

\[
\min_{\alpha} \sum_i \left[\log y_i - \log \tilde{g}(Z_i, \alpha) - \log \hat{\psi}(A_i, N_i) \right]^2
\] (9)

where

\[
\log \hat{\psi}(A_i, N_i) = \frac{\sum_{k \neq i} [\log y_i - \log \tilde{g}(Z_i, \alpha)] K(A_i - A_k, N_i - N_k)}{\sum_{k \neq i} K(A_i - A_k, N_i - N_k)}.
\]

To construct the covariance matrix, define

\[
\bar{Z}_i = \frac{\partial \log \tilde{g}(Z_i, \alpha)}{\partial \alpha} + \frac{\partial \log \hat{\psi}(A_i, N_i)}{\partial \alpha}
\]

and

\[
\varphi_i(\alpha) = \log y_i - \log \tilde{g}(Z_i, \alpha) - \log \hat{\psi}(A_i, N_i).
\]
Consider a Taylor series approximation of the condition that \tilde{Z}_i should be orthogonal to $\varphi_i(\alpha)$:

$$\frac{1}{n} \sum_i \left[\tilde{Z}'_i \varphi_i (\tilde{\alpha}) - \tilde{Z}'_i \varphi_i (\tilde{\alpha}) (\tilde{\alpha} - \alpha) \right].$$

Then

$$\hat{\alpha} - \alpha = \left[\frac{1}{n} \sum_i -\tilde{Z}'_i \varphi_i (\tilde{\alpha}) \right]^{-1} \left[\frac{1}{n} \sum_i \tilde{Z}'_i \varphi_i (\tilde{\alpha}) \right],$$

and

$$\text{Cov} (\hat{\alpha}) = \left[\frac{1}{n} \sum_i \tilde{Z}'_i \varphi_i (\tilde{\alpha}) \right]^{-1} \left[\frac{1}{n} \sum_i \tilde{Z}'_i \varphi_i (\tilde{\alpha}) \varphi'_i (\tilde{\alpha}) \tilde{Z}_i \right] \left[\frac{1}{n} \sum_i \varphi_i (\tilde{\alpha})' \tilde{Z}_i \right]^{-1}.$$

3 Allowing for Effects Across Nearby Counties

Let d_{ik} be the distance between two counties i and k. Let $\phi (d_{ik})$ be a function (somewhat like a kernel function) such that

$$\arg \max_d \phi (d) = 0,$$

$$\frac{\partial \phi (d)}{\partial d} \leq 0,$$

$$\phi (d) = 0 \quad \forall d : |d| \geq d_{\text{max}}.$$

Then we can generalize equation (5) to

$$\tilde{g}^* (X^*) = \frac{\sum y_i^* K (X_i^* - X^*)}{\sum K (X_i^* - X^*)}$$

where

$$y_i^* = \frac{\sum_k \phi (d_{ik}) y_k}{\sum_k \phi (d_{ik})};$$

$$X_i^* = \frac{\sum_k \phi (d_{ik}) X_k}{\sum_k \phi (d_{ik})}.$$

Note that (y_i^*, X_i^*) satisfy a resource constraint (inputs used in one county can’t be used in another).

Theorem 3 $\sum_i X_i^* = \sum_i X_i$.

5
Proof.

\[\sum_i X_i^* = \sum_i \sum_k \phi(d_{ik}) X_k = \sum_i \sum_k \phi(d_{ik}) \sum_k X_k \]
\[= \sum_k \sum_i \phi(d_{ik}) X_k = \sum_i (\sum_k \phi(d_{ik})) (\sum_k X_k) \]
\[= \sum_k X_k = \sum_i X_i. \]

Also, if we parameterize \(\phi(\cdot) \) subject to the conditions in equation (11), we can estimate the parameters by using an objective function, such as
\[\min \sum_i [y_i^* - \tilde{g}^*(X_i^*)]^2 \]
as in Ichimura and Lee (1991). Also, it is straightforward how to generalize equation (9) to allow for cross county effects similarly: just replace \((y_i, Z_i, A_i, N_i)\) with corresponding \((y_i^*, Z_i^*, A_i^*, N_i^*)\).

4 Adjustment of the Covariance Matrix for Nearby County Correlations

If we start with equation (10) and square it, we get
\[\text{Cov}(\hat{\alpha} - \alpha) = \text{plim} \left[\frac{1}{n} \sum_i \tilde{Z}_i \varphi_{i\alpha}(\hat{\alpha}) \right]^{-1} \cdot \]
\[\text{plim} \left[\frac{1}{n} \sum_i \sum_j \tilde{Z}_i \varphi_i(\hat{\alpha}) \varphi_j(\hat{\alpha}) \tilde{Z}_j \right] \text{plim} \left[\frac{1}{n} \sum_i \varphi_{i\alpha}(\hat{\alpha})' \tilde{Z}_i \right]^{-1} \]
\[= \text{plim} \left[\frac{1}{n} \sum_i \tilde{Z}_i \varphi_{i\alpha}(\hat{\alpha}) \right]^{-1} \cdot \]
\[\text{plim} \left[\frac{1}{n} \sum_i \sum_j \sigma_{ij} \tilde{Z}_i \tilde{Z}_j \right] \text{plim} \left[\frac{1}{n} \sum_i \varphi_{i\alpha}(\hat{\alpha})' \tilde{Z}_i \right]^{-1} \]
where \(\sigma_{ij} = E \varphi_i(\hat{\alpha}) \varphi_j(\hat{\alpha}) \). In the earlier analysis, we assume that \(\sigma_{ij} = 0 \) if \(i \neq j \). But, \(\sigma_{ij} \) may be nonzero because a) our smoothing methodology causes correlation among geographically nearby counties and b) the errors in \(\varphi(\hat{\alpha}) \) may have been correlated naturally because of geographical proximity. The possibility of (b) suggests that a straightforward correction controlling for the correlation induced by smoothing would not be sufficient. An alternative,
following the lead of Newey and West (1987), is to estimate

\[\hat{\sigma}_{ij} = \begin{cases} \varphi_i(\hat{\alpha}) \varphi_j(\hat{\alpha}) & \text{if } \phi(d_{ik}) > 0 \\
0 & \text{if } \phi(d_{ik}) = 0 \end{cases}. \]

While \(\hat{\sigma}_{ij} \) is not a consistent estimate of \(\sigma_{ij} \), as in Newey and West (1987),
\[\frac{1}{n} \sum_i \sum_j \hat{\sigma}_{ij} Z_i^t Z_j^t \]
is a consistent estimator of \(\text{plim} \left[\frac{1}{n} \sum_i \sum_j \sigma_{ij} Z_i^t Z_j^t \right] \) for the same reasons.

5 Covariance Matrix for \(\hat{\psi} \)

Let \(x = (A, N) \). Starting from Pagan and Ullah (1999), Theorem 3.5,

\[(nh)^{1/2} \left[\hat{\psi}(x) - E\hat{\psi}(x) \right] = \hat{f}^{-1}(0) (nh)^{-1/2} \sum_i K_i(x) u_i. \]

Therefore,

\[
\text{Cov} \left[\hat{\psi}(x_1), \hat{\psi}(x_2) \right] = \hat{f}^{-2}(0) \text{plim} \left[(nh)^{-1} \sum_i \sum_j K_i(x_1) K_j(x_2) u_iu_j \right] = \hat{f}^{-2}(0) \left[(nh)^{-1} \sum_i \sum_j K_i(x_1) K_j(x_2) \sigma_{ij} \right].
\]

Note that, if \(\sigma_{ij} = 0 \) for all \(i \neq j \), then \(\text{Cov} \left[\hat{\psi}(x_1), \hat{\psi}(x_2) \right] = 0 \) for all \(x_1 \neq x_2 \) because \(K_i(x_1) K_i(x_2) = 0 \).

Define

\[\psi^*(x) = \begin{pmatrix} \hat{\psi}(x_1, x_2) \\ \hat{\psi}(x_1 + \delta_1, x_2) \\ \hat{\psi}(x_1, x_2 + \delta_2) \end{pmatrix} \]

Consider

\[r(\psi^*(x), x) = \log \left[\frac{\exp(\psi(x_1 + \delta_1, x_2)) - \exp(\psi(x_1, x_2))}{\exp(\psi(x_1, x_2 + \delta_1)) - \exp(\psi(x_1, x_2))} \right] \]

with estimator

\[\hat{r}(\psi^*(x), x) = \log \left[\frac{\exp(\hat{\psi}(x_1 + \delta_1, x_2)) - \exp(\hat{\psi}(x_1, x_2))}{\exp(\psi(x_1, x_2 + \delta_1)) - \exp(\psi(x_1, x_2))} \right]. \]
Then

\[\text{Var} \left[\hat{r} (\psi^* (x), x) \right] = r_{\psi} (x) \text{Cov} [\psi^* (x)] r_{\psi} (x) \]

where

\[
r_{\psi} (x) = \frac{\partial r (x)}{\partial \psi^* (x)} = \left(\begin{array}{c}
-1 - r(x) \\
\exp \left\{ \psi(x_1 + \delta_1, x_2) - \psi(x_1, x_2) \right\} - 1 \\
\exp \left\{ \psi(x_1, x_2) - \psi(x_1, x_2) \right\} - 1 \\
\exp \left\{ \psi(x_1, x_2 + \delta_2) - \psi(x_1, x_2) \right\} - 1
\end{array} \right)
\]

and \(\text{Cov} [\psi^* (x)] \) is given above.

References

