Math 312/512 Assignment #1, Ch. 7, Jan. 22, 2004
C. Dunkl

1) Find MLE for \(\theta \), given random sample from exponential density

\[
f(x) = \begin{cases}
 e^{-(x-\theta)} & \text{for } x \geq \theta, \\
 0 & \text{for } x < \theta
\end{cases}
\]

observe \(x_1, x_2, \ldots, x_n \), likelihood function is \(f(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^{n} e^{-(x_i - \theta)} \) with each \(x_i \geq \theta \); then the log-likelihood function is \(L(x_1, x_2, \ldots, x_n | \theta) = \log f = -n \sum_{i=1}^{n} (x_i - \theta) = n\theta - \sum_{i=1}^{n} x_i \). This is an increasing function in \(\theta \) (derivative = \(n \)) so has its maximum at the upper endpoint of its domain of definition: \(\theta \leq x_i \) for each \(i \), equivalent to \(\theta \leq \min_i \{ x_i \} \); thus the MLE for \(\theta \) is \(\min_i \{ x_i \} \).

2) Find MLE for \(\theta \), given random sample from two-sided exponential density

\[
f(x) = \frac{1}{2} e^{-|x-\theta|},
\]
similarly to (1) the likelihood function is \(f(x_1, x_2, \ldots, x_n | \theta) = 2^{-n} \prod_{i=1}^{n} e^{-|x_i - \theta|} \) and \(L(x_1, x_2, \ldots, x_n | \theta) = \log f = -n \log 2 - \sum_{i=1}^{n} |x_i - \theta| \). Relabel the data points so that \(x_1 < x_2 < x_3 < \ldots < x_n \). When \(x_m \leq \theta \leq x_{m+1} \) we have

\[
|x_{j} - \theta| = \begin{cases}
 x_{j} - \theta & \text{for } j \geq m + 1 \\
 \theta - x_{j} & \text{for } j \leq m
\end{cases}
\]

and \(-\sum_{i=1}^{m} |x_i - \theta| = -\sum_{i=1}^{m} (\theta - x_i) - \sum_{i=m+1}^{n} (x_j - \theta) = (-m + n - m) \theta + \sum_{i=1}^{m} x_i - \sum_{i=m+1}^{n} x_i \). Note the slope is \(n - 2m \). When \(2m < n \) the function \(L(\theta) \) is increasing, when \(2m > n \) the function \(L(\theta) \) is decreasing: if \(n \) is even \(L \) has slope 0 between \(x_{n/2} \) and \(x_{n/2+1} \) (so the MLE is the median, \((x_{n/2} + x_{n/2+1})/2 \)); if \(n \) is odd the slopes have values \(3, 1, -1, -3, \ldots \) and the maximum value is at the corner \(x_{(n+1)/2} \). The MLE for \(\theta \) is \(x_{(n+1)/2} \), again the median of \(x_1, x_2, \ldots, x_n \).

3) Random sample \(x_1, x_2, \ldots, x_n \) from \(N(\mu, \sigma^2) \) with \(\mu \) known. Use the calculations on page 221, replace \(\frac{\partial}{\partial \mu} \) by \(\frac{d}{d\mu} \), obtain the MLE for \(\sigma^2 \) is \(\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \). Further \(E\left[\hat{\sigma}^2 \right] = \frac{1}{n} \sum_{i=1}^{n} E\left[(x_i - \mu)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \sigma^2 = \frac{1}{n} (n\sigma^2) = \sigma^2 \).

4) There are two independent measurements, for \(X \) and \(\theta \); a model for measurements with random errors is usually the following: the measurement is a random variable \(X = \mu + \varepsilon \) where \(\mu \) is the actual value to be measured and \(\varepsilon \) denotes the measurement error, typically with the distribution \(N(0, \sigma^2) \). Given several independent observations the MLE for \(\mu \) is exactly the sample mean (more precisely, the observations are \(\mu + \varepsilon_1, \mu + \varepsilon_2, \ldots, \mu + \varepsilon_n \), then \(\frac{1}{n} \sum_{i=1}^{n} (\mu + \varepsilon_i) = \mu + \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i = \mu + \overline{\varepsilon} \); and \(E[\overline{\varepsilon}] = 0, \text{ var (} \overline{\varepsilon} \text{) =} \frac{\sigma^2}{n} \). In this problem, find the average \(\overline{X}, \theta \) values, estimate the height as \(\overline{X} \tan \theta \).