Prob 7.43)

Sun Gear:

Let \(r_s \) = radius of sun gear (watch units)

\(P_N = \) normal force exerted on sun gear by the three planet gears

\(P_T = \) tangential force exerted on sun gear by the three planet gears

\(R_N = \) normal force exerted on planet gear by the outer ring

\(R_T = \) tangential force exerted on planet gear by the outer ring

Top Planet Gear:

Summing Forces and Moments:

\[\Sigma M_o = M - 3P_T = I_s ds \]

\[\Sigma M_p = R_T v_p - P_T v_p = I_p \omega_p \]

\((\Sigma F_T)_{planer} = R_T + P_T = m_p a_T \)

Kinematics:

Note that the ring is stationary, so at point \(A \) on the planet gear, \(\alpha_T = 0 \).

Thus, \(a_p = v_p \omega_p \) and \(a_B = 2v_p \omega_p \)

Also, point \(B \) is where the sun gear and the planet gears come into contact. Because the center \((O) \) of the sun gear is stationary, \(a_o = 0 \). This means that \(a_{B_T} = r_s ds \) which we can set equal to the above expression for \(a_{B_T} \).