1. Homomorphisms between Verma modules of simple Lie superalgebras, 16pp.
    arXiv:1712.09966


  1. Graded super duality for general linear Lie superalgebras, 25pp.
    arXiv:1712.00529


  1. The center of the twisted Heisenberg category, factorial Schur Q-functions, and transition functions on the Schur graph, 37pp.
    arXiv:1712.09626
  2. Cocenters of Hecke-Clifford and spin Hecke algebras,  J. Algebra, (2017), 85-112.  
    arXiv:1605.05744
  3. Trace of the twisted Heisenberg category (with Can Oguz), Commun. Math. Phys., 36pp.
    arXiv:1702.08108
  4. Extended nilHecke algebra and symmetric functions in type B,  11pp.   
    arXiv:1710.10698

 

   Ph.D. thesis:  Affine quantum symmetric pairs: multiplication formulas and canonical bases

(1)   On Weyl modules over affine Lie algebras in prime characteristic, 30 pp., Transformation Groups,           
 ArXiv:1310.3696

(2)   An elementary construction of monomial bases of quantum affine gl_n,  (with Li LUO), 15 pp., J. LMS        
 arXiv:1506.07263 
 

(3)   Affine flag varieties and quantum symmetric pairs

 (with Zhaobing Fan,  Yiqiang Li,  Li Luo,  WW),   113 pages, Memoirs AMS.            
 arXiv:1602.04383

(4)   Affine Hecke algebras and quantum symmetric pairs

     (with Zhaobing Fan,  Yiqiang Li,  Li Luo,  WW),  87 pages

       arXiv.1609.06199

   Ph.D. thesis:  Canonical bases arising from quantum symmetric pairs and Kazhdan-Lusztig theory

(1)   Geometric Schur duality of classical type, (with J. Kujawa, Y. Li, WW), 53 pages, Transformation Groups,
 arXiv:1404.4000v3          

(2)  Canonical bases in tensor products revisited, (with WW), Amer. J. Math. (2016).
 arXiv:1403.0039
          

(3)  A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, (with WW), 92 pages
 arXiv:1310.0103          

 

         Ph.D. thesis:  Quantum Supergroups and Canonical Bases

 

         (1) Canonical basis for quantum osp(1|2), (with WW), Lett. Math. Phys. 103 (2013), 207--231
            arXiv:1204.3940

         (2) Quantum supergroups I. Foundations
            (with
David Hill and WW), Transformation Groups 18 (2013), 1019--1053.
            arXiv:1301.1665

          (3) Quantum supergroups II. Canonical basis
            (with
David Hill and WW), Represent. Theory 18 (2014), 278--309.
            arXiv:1304.7837

          (4) Quantum supergroups III. Twistors
            (with
Zhaobing Fan, Yiqiang Li and WW), Commun. Math. Phys. 322 (2014), 415--436.
            arXiv:1307.7056
         
(5) Quantum shuffles and quantum supergroups of basic type
            (with
David Hill and WW), 50 pages, Quantum Topology (to appear, 2015)
            arXiv:1310.7523
         
(6) Quantum supergroups IV. The modified form, Math. Z. 278 (2014), 493--528.
            arXiv:1312.4855
           

 

(1)  Coinvariant algebras and fake degrees for spin Weyl groups of classical type, (with WW), Math. Proc. Cambridge Philos. Soc. 156 (2014), 43--79.
 arXiv:1207.0525
v2 

(2) Coinvariant algebras and fake degrees for spin Weyl groups of exceptional type, (with WW), J. Algebra (to appear 2015).

 arXiv:1306.1290

 

          Ph.D. thesis:  Parabolic Presentations of the Super Yangian Y_{M|N} and Applications

 

(1) Parabolic presentations of the super Yangian Y(gl_{M|N}),Comm. Math. Phys. 307 (2011), 229--259.
arXiv:1012.1062

(2) On shifted super Yangians and a class of finite W-superalgebras, J. Algebra 422 (2015), 520--562.
arXiv:1308.4772

 

          Ph.D. thesis:  Representations of Affine Hecke Algebras and Related Algebras

        
(1) Modular representations and branching rules for wreath Hecke algebras
            (with
WW),  International Mathematics Research Notices (2008), Article ID: rnn128-31, 31 pages
            arXiv:0806.0196

         (2)
Wreath Hecke algebras and centralizer construction for wreath products, J. Algebra 323 (2010), 2371--2397.
            arXiv:0810.2767
         (3)
Completely splittable representations of affine Hecke-Clifford algebras, J. Algebr. Comb. 32 (2010),15-58.
            arXiv:0904.1158
         (4)
Spin invariant theory for the symmetric group, (with WW),  J. Pure Applied Algebra 215 (2011), 1569--1581.
            arXiv:1002.0272 

 

          Ph.D. thesis:  Modular Representations of Lie Superalgebras

         
(1) Representations of Lie superalgebras in prime characteristic I,
            (with
WW), Proc. London Math. Soc. 99 (2009), 145--167.
            arXiv:0808.0046          
         
(2) Representations of Lie superalgebras in prime characteristic II: The queer series,
            (with
WW), J. Pure Applied Algebra 215 (2011), 2515--2532.
           
arXiv:0902.2758
         
(3) Typical blocks of Lie superalgebras in prime characteristic, Commun. in Alg. 39 (2011), 534--547.
            arXiv:0905.1760
         
(4) Representations of Lie superalgebras in prime characteristic III, Pacific J. Math 248 (2010), 493--510.
            arXiv:0910.2077     

 

Ph.D. thesis:  Spin Hecke Algebras

 (1) 
Hecke-Clifford algebras and spin Hecke algebras I: The classical affine type,
           (with
WW), Transformation Groups 13 (2008), 389--412.
            arXiv:0704.0201
 
(2) Hecke-Clifford algebras and spin Hecke algebras II: The rational double affine type,
            (with
WW), Pacific J. Math. 238 (2008), 73--103.
            arXiv:0710.5877
 
(3) Hecke-Clifford algebras and spin Hecke algebras III: The trignometric type,
            J. Algebra 322 (2009), 2731--2750.
            arXiv:0808.2951
 (4) 
Hecke-Clifford algebras and spin Hecke algebras IV: Odd double affine type,
         
(with WW), Special Issue on Dunkl Operators and Related Topics, SIGMA 5 (2009), 012, 27 pages.
            arXiv:0810.2068

 

         Ph.D. thesis:  The Centers of Spin Symmetric and Spin Hyperoctahedral Group Algebras     

       
(1) The centers of spin symmetric group algebras and Catalan numbers,
           (with
WW),  J. Algebr. Combin. 29 (2009), 175--193.
            arXiv:0711.3054

 

        Ph.D. thesis:  The Bloch-Okounkov Correlation Functions and Dimension Formulas for Modules of Infinite-Dimensional Lie Algebras 

 

       (1) The Bloch-Okounkov correlation functions of classical type,
          (with
WW),  Commun. Math. Phys. 276 (2007), 473--508.
          math.RT/0609036
       (2) The Bloch-Okounkov correlation functions of negative levels,
           (with
S.-J. Cheng and WW),  J. Algebra 319 (2008),  457--490.
            arXiv:0706.3742
        
(3) The Bloch-Okounkov correlation functions, a classical half-integral case,  
             Lett. Math. Phys. 85 (2008), 235--248.
            arXiv:0806.3257