1 Lagrange Multiplier Test for State Effects

Our model (in equation (1)) is

\[y_{nijt} = X_{nit} \beta_j + Z_{nijt} \gamma + \alpha_j y_{nijt-1} + \omega_{nijt} + \varepsilon_{nijt}. \]

In section 5.2, we consider a more general model,

\[y_{nijt} = X_{nit} \beta_j + Z_{nijt} \gamma + \alpha_j y_{nijt-1} + \sum_s d_{nis} \tau_{is} + \omega_{nijt} + \varepsilon_{nijt}, \]

and we want to test

\[H_0 : \tau_{is} = 0 \quad \forall s \]

against the general alternative. The complication is that there are a lot of singularities associated with state dummies \(d_{nis} \) and any variables in \(X_{nit} \) that are constant over time; i.e., all of the policy variables.

Instead of trying to carefully analytically determine all of the restrictions, we can achieve the same result more generally. Consider a problem,

\[u_{K \times 1} \sim N(0, \Omega) \]
\[A u = 0. \]

We can think of \(u \) as the vector of \(K \) score statistics from a Lagrange Multiplier test and \(A \) as the matrix of \(R \) restrictions imposed on \(u \) associated with state dummies and time-constant elements of \(X_{nit} \). We can decompose \(\Omega \) as

\[\Omega = C \lambda C' \]

where \(C \) is the matrix of eigenvectors of \(\Omega \) and \(\lambda \) is a diagonal matrix with the nonnegative eigenvalues on the diagonal. The fact that there are \(R \) restrictions imposed on \(u \) implies that \(R \) of the eigenvalues in \(\lambda \) are zero, so we can write

\[\lambda = \begin{pmatrix} 0 & 0' \\ R \times R & 0 \\ (K-R) \times R & D \\ 0 & (K-R) \times (K-R) \end{pmatrix} \]

and

\[C = \begin{pmatrix} C_{11} & C_{12} \\ R \times R & R \times (K-R) \\ C_{21} & C_{22} \\ (K-R) \times R & (K-R) \times (K-R) \end{pmatrix} = \begin{pmatrix} C_1 \\ R \times K \\ C_2 \\ (K-R) \times K \end{pmatrix} \]

(where \(C_2 \) is the matrix of eigenvectors associated with the positive eigenvalues). We can ignore \(C_1 u \) because the restrictions imply that it is zero.

Thus, consider

\[C_2 u \sim N(0, C_2 \Omega C_2'). \]

Note that

\[C_2 \Omega C_2' = C_2 \lambda C' C_2 \]

1
\[
\begin{align*}
&= C_2 \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \begin{pmatrix} 0 & 0' \\ 0 & D \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}' C_2' \\
&= \begin{pmatrix} C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} 0 & 0' \\ 0 & D \end{pmatrix} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}' \begin{pmatrix} C_{21}' \\ C_{22}' \end{pmatrix} \\
&= \begin{pmatrix} C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} C_{12}' C_{12}' C_{21}' + C_{22}' C_{22}' C_{21}' C_{22}' + C_{21}' C_{22}' C_{22}' C_{22}' + C_{22}' C_{22}' C_{22}' C_{22}' \\ C_{22}' C_{22}' C_{22}' C_{22}' \end{pmatrix} \\
&= C_{21}' C_{12}' C_{21} + C_{22}' C_{22}' C_{21} + C_{21}' C_{12}' C_{22}' C_{22} + C_{22}' C_{22}' C_{22}' C_{22} \\
&= \begin{pmatrix} C_{21} + C_{22} \end{pmatrix} D \begin{pmatrix} C_{12}' C_{21} + C_{22}' C_{22} \end{pmatrix} = D.
\end{align*}
\]

Then, under H_0,
\[
D^{-1/2} C_2 u \sim N (0, I_{K-R}),
\]
and
\[
\left(D^{-1/2} C_2 u \right)' \left(D^{-1/2} C_2 u \right) \sim \chi^2_{K-R}.
\]

Note that, instead of having to analytically determine all of the singularities in u, we need only count the number of positive eigenvalues.\(^1\)

For our problem, the sample test statistic is 1850.7, and it is distributed χ^2_{221} under H_0. This is statistically significant at any relevant size.

\(^1\)There is a roundoff error problem in that some zero eigenvalues will appear to be very small numbers. We use a rule of thumb that any eigenvalue less than 0.0001 is really zero.