1) Consider the model

\[y^*_ij = X_i \beta_j + u_{ij}, \quad j = 1, 2, ..., J; i = 1, 2, ..., I \]

with

\[F(u_{ij}) = \exp \{-e^{-u_{ij}}\}. \]

The econometrician does not observe \(y^*_ij \); instead she observes

\[y_{ij} = \max_k y^*_{ik}; \]

she observes which choice \(j \) is the best.

a) Find \(\Pr[y_{ij} = 1 \mid X_i] \).
b) Find a MLE for \(\beta \).
c) Find a MOM estimator for \(\beta \).

2) Consider a model where there is a distribution of prices \(F(\cdot) \) for bananas. Assume consumer \(i \) purchases a banana if he encounters a price \(p < r_i \) where \(r_i \) satisfies

\[G(r_i, X_i) = 0. \]

Given a random sample of accepted banana prices and personal characteristics \(\{p_i, X_i\}_{i=1}^n \), show how you can estimate parameters implicit in \(F(\cdot) \) and \(G(\cdot, \cdot) \). What reasonable identifying assumptions might you have to make?

3) Let

\[y = X\beta + Z\gamma + u, \quad u \sim (0, \sigma^2 I). \]

Note that it was not assumed that the errors were normal. Consider

\[H_0: \gamma = 0 \quad \text{vs} \quad H_A: \gamma \neq 0. \]

Suggest a LM-like test, i.e. one that requires estimation of only the restricted model to test the null hypothesis.