1) Consider

\[y = X\beta + u, \]
\[Euu' = \Omega. \]

Show that GLS is BLUE.

2) Consider the model

\[y_i = X_i\beta + u_i, \]
\[u_i \sim iid(0, \sigma^2), \quad i = 1, 2, \ldots, N. \]

We know that the statistical properties of the OLS estimator of \(\beta \) improve as \(N \) increases. So consider doubling the sample size by just using every observation twice. Derive the statistical properties of an estimator that uses each observation twice.

3) Consider a population with a joint density of \((y, X)\):

\[f(y, X). \]

Now consider a sample of this population, \(\{y_i, X_i\}_{i=1}^N \) where observation \(i \) is sampled with known probability \(p(X_i) \). Such a method is called stratified sampling, and it is used to oversample people with certain characteristics (e.g., race).

a) Given your sample, suggest an estimator of \(\mu_y = E_y \)

of the form

\[\hat{\mu}_y = \sum_{i=1}^N \alpha_i y_i; \]

i.e., what are good choices of \(\{\alpha_i\}_{i=1}^N \)? Show that your estimator is unbiased and derive its variance.

b) Consider the true model

\[y_i = X_i\beta + u_i, \]
\[u_i \sim iid(0, \sigma^2). \]

How should you use the information about sampling probabilities in \(p(X_i) \) in a GLS framework to weight observations and get a more efficient estimator of \(\beta \) than the OLS estimator?
4) Consider the process

\[u_t - \rho_1 u_{t-1} - \rho_2 u_{t-2} = a_0 \varepsilon_t + a_1 \varepsilon_{t-1}, \]
\[\varepsilon_t \sim iid \left(0, \sigma^2 \right). \]

a) Find the autocovariance function for \(u_t \).
b) Let

\[z_t - \theta z_{t-1} = u_t \]

where the process for \(u_t \) is the same as above. Write the process for \(z_t \) as an ARMA process.