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Abstract. This article was born as an application of the Top Terms’ Rela-

tionship proved by the author and Series in [15] and also as generalisation of

the analysis made by Series in [26] where she made the first attempt to plot a
deformation space of Kleinian group of more than 1 complex dimension. We

use this formula to determine the asymptotic directions of pleating rays in the
Maskit embedding of a hyperbolic surface Σ as the bending measure of the

‘top’ surface in the boundary of the convex core tends to zero. The Maskit

embedding M of a surface Σ is the space of geometrically finite groups on the
boundary of quasifuchsian space for which the ‘top’ end is homeomorphic to

Σ, while the ‘bottom’ end consists of triply punctured spheres, the remains

of Σ when the pants curves have been pinched. Given a projective measured
lamination [η] on Σ, the pleating ray P = P[η] is the set of groups in M for

which the bending measure pl+(G) of the top component ∂C+ of the boundary
of the convex core of the associated 3-manifold H3/G is in the class [η].

1. Introduction

Let Σ be a surface of negative Euler characteristic together with a pants de-
composition P. Kra’s plumbing construction endows Σ with a projective structure
as follows. Replace each pair of pants by a triply punctured sphere and glue, or
‘plumb’, adjacent pants by gluing punctured disk neighbourhoods of the punctures.
The gluing across the ith pants curve is defined by a complex parameter τi ∈ C.
The associated holonomy representation ρ : π1(Σ) −→ PSL(2,C) gives a projective
structure on Σ which depends holomorphically on the τi. In particular, the traces
of all elements ρ(γ), γ ∈ π1(Σ), are polynomials in the τi.

In [15] the author and Series proved a formula, called Top Terms’ Relationship,
which is Theorem 2.11 in Section 2.1.1, giving a simple linear relationship between
the coefficients of the top terms of ρ(γ), as polynomials in the τi, and the Dehn–
Thurston coordinates of γ relative to P, see Section 2.1.1 for the definitions. This
result generalises the previous results proved by Keen and Series in [13] in the case
of the once punctured torus Σ1,1 and by Series in [26] for the twice punctured
torus Σ1,2. These formulas were used in the case Σ = Σ1,1,Σ1,2 to determine
the asymptotic directions of pleating rays in the Maskit embedding of Σ as the
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bending measure of the ‘top’ surface in the boundary of the convex core tends to
zero, see Section 2 for the definitions. In the present article we will use the general
Top Terms’ Relationship to generalise the description of asymptotic directions of
pleating rays to the case of an arbitrary hyperbolic surface Σ, see Theorem 3.8 in
Section 3. The Maskit embedding M of a surface Σ is the space of geometrically
finite groups on the boundary of quasifuchsian space for which the ‘top’ end is
homeomorphic to Σ, while the ‘bottom’ end consists of triply punctured spheres,
the remains of Σ when the pants curves have been pinched. As such representations
vary in the character variety, the conformal structure on the top side varies over
the Teichmüller space T (Σ), see Section 2.4 for a detailed discussion.

Let Σ = Σg,b, and suppose we have a geometrically finite free and discrete rep-
resentation ρ for which Mρ = Σ×R. Denote ξ = ξ(Σ) = 3g−3+b the complexity of
the surface Σ. Fix disjoint, non-trivial, non-peripheral and non-homotopic simple
closed curves σ1, . . . , σξ which form a pants decomposition of Σ. We consider groups
for which the conformal end ω− is a union of triply punctured spheres glued across
punctures corresponding to σ1, . . . , σξ, while ω+ is a marked Riemann surface home-
omorphic to Σ. Kra’s plumbing construction gives us an explicit parametrisation of
a holomorphic family of representation ρτ : π1(Σ) −→ G(τ) ∈ PSL(2,C) such that,
for certain values τ = (τ1, . . . , τξ) ∈ Cξ of the parameters, ρτ has the above geom-
etry, see Section 2.2 for the definition of this construction. The Maskit embedding
is the map which sends a point X ∈ T (Σ) to the point τ = (τ1, . . . , τξ) ∈ Cξ for
which the group G(τ) has ω+ = X. Denote the image of this map byM =M(Σ).
Note that, with abuse of notation, we will also call Maskit embedding the imageM
of the map T (Σ) −→ Cξ just described.

We investigate M using the method of pleating rays. Given a projective mea-
sured lamination [η] on Σ, the pleating ray P = P[η] is the set of groups in M
for which the bending measure pl+(G) of the top component ∂C+ of the bound-
ary of the convex core of the associated 3-manifold H3/G is in the class [η]. It is
known that P is a real 1-submanifold ofM. In fact we can parametrise this ray by
θ ∈ (0, cη), where cη ∈ (0, π), so that we associate to θ the group Gθ ∈ P such that
pl+(Gθ) = θη, see Theorem 6 in [25] for the case Σ = Σ1,1. Note that this result
relies on Thurston’s bending conjecture which is solved for rational lamination by
work of Otal and Bonahon and in the case of punctured tori by work of Series.
For a general (irrational) lamination, anyway, we can only conjecture that the real
dimension of the associated pleating ray is 1. Our main result is a formula for the
asymptotic direction of P in M as the bending measure tends to zero, in terms of
natural parameters for the representation space R and the Dehn–Thurston coor-
dinates of the support curves to [η] relative to the pinched curves on the bottom
side. This leads to a method of locating M in R.

We restrict to pleating rays for which [η] is rational, that is, supported on
closed curves, and for simplicity write Pη in place of P[η], although noting that
Pη depends only on [η]. From general results of Bonahon and Otal [4], for any
pants decomposition γ1, . . . , γξ such that σ1, . . . , σξ, γ1, . . . , γξ are mutually non-
homotopic and fill up Σ (see section 2.5 for the definitions), and any vector of
angles θi ∈ (0, π), there is a unique group in M for which the bending measure
of ∂C+ is

∑ξ
i=1 θiδγi . (This extends to the case θi = 0 for i ∈ I ⊂ {1, . . . , ξ}

provided {σ1, . . . , σξ, γj |j /∈ I} fill up Σ and also to the case θ = π.) Thus given
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η =
∑ξ
i=1 aiδγi , there is a unique group G = Gη(θ) ∈ M with bending measure

pl+(G) = θη for any sufficiently small θ > 0.
Let S denote the set of homotopy classes of multiple loops on Σ, and let the

pants curves defining P be σi, i = 1, . . . , ξ. The Dehn–Thurston coordinates of
γ ∈ S are i(γ) = (q1, p1, . . . , qξ, pξ), where qi = i(γ, σi) ∈ N ∪ {0} is the geometric
intersection number between γ and σi and pi ∈ Z is the twist of γ about σi.
For a detailed discussion about this parametrisation see Section 2.1.1 below or
Section 3 of [15] . If η =

∑ξ
i=1 aiδγi , the above condition of Bonahon and Otal

on σ1, . . . , σξ, γ1, . . . , γξ is equivalent to ask qi(η) > 0,∀i = 1, . . . , ξ. We call such
laminations admissible.

The main result of this paper is the following. We will state this result more
precisely, as Theorem 3.8 in Section 3.

Theorem A. Suppose that η =
∑ξ
i=1 aiδγi is admissible. Then, as the bending

measure pl+(G) ∈ [η] tends to zero, the pleating ray Pη approaches the line

<τi =
pi(η)
qi(η)

,
=τ1
=τj

=
qj(η)
q1(η)

.

We should note that, in contrast to Series’ statement, we were able to dispense
with the hypothesis ‘η non exceptional’ (see [26] for the definition), because we
were able to improve the original proof. In addition, the definition of the line is
different because we have corrected a misprint in [26].

One might also ask for the limit of the hyperbolic structure on ∂C+(G) as the
bending measure tends to zero. The following result is an immediate consequence
of the first part of the proof of Theorem A.

Theorem B. Let η =
∑ξ

1 aiδγi be as above. Then, as the bending measure
pl+(G) ∈ [η] tends to zero, the induced hyperbolic structure of ∂C+ along Pξ con-
verges to the barycentre of the laminations σ1, . . . , σξ in the Thurston boundary of
T (Σ).

This should be compared with the result in [24], that the analogous limit
through groups whose bending laminations on the two sides of the convex hull
boundary are in the classes of a fixed pair of laminations [ξ±], is a Fuchsian group
on the line of minima of [ξ±]. It can also be compared with Theorem 1.1 and 1.2
in [7].

Finally, we wanted to underline that the result achieved in Theorem 2.4 about
the relationship between the Thurston’s symplectic form and the Dehn–Thurston
coordinates for the curves is very interesting in its own. It tells us that given two
loops γ, γ′ ∈ S which belongs to the same chart of the standard train track, see
Section 2.1.2 for the definition, then ΩTh(γ, γ′) =

∑ξ
i=1(qip′i − q′ipi), where the

vector i(γ) = (q1, p1, . . . , qξ, pξ), i(γ′) = (q′1, p
′
1, . . . , q

′
ξ, p
′
ξ) are the Dehn–Thurston

coordinates of the curves γ, γ′.
The plan of the paper is as follows. Section 2 provides an overview of all the

background material needed for understanding and proving the main results which
we will prove in Section 3. In particular, in Section 2 we will discuss issues related to
curves on surfaces (for example we will recall the Dehn–Thurston coordinates of the
space of measured laminations, Thurston’s symplectic structure, and the curve and
the marking complexes), we will review Kra’s plumbing construction which endows
a surface with a projective structure whose holonomy map gives us a group in the
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Maskit embedding, and we will discuss the Top Terms’ Relationship. Then we will
recall the definition of the Maskit embedding and of the pleating rays. In Section 3,
on the other hand, after fixing some notation, we will prove the three main results
stated above. We will follows Series’ method [26]: we will state (without proof)
the theorems which generalise straightforwardly to our case, but we will discuss
the results which require further comments. In particular, many proofs become
much more complicated when we increase the complex dimension of the parameter
space from 1 or 2 to the general ξ(Σ). It is worth noticing that, using a slightly
different proof in Theorem A, we were able to extend Series’ result to the case of
‘non-exceptional’ laminations, see Section 3 for the definition. We also correct some
mistakes in the statement of Theorem A.

2. Background

2.1. Curves on surfaces.
2.1.1. Dehn–Thurston coordinates. In this section we review Dehn–Thurston

coordinates, which extend to global coordinates for the space of measure lamina-
tions ML(Σ). These coordinates are effectively the same as the canonical coordi-
nates in [26]. We follow the description in [15]. First we need to fix some notation.

Suppose Σ is a surface of finite type, let S0 = S0(Σ) denote the set of free
homotopy classes of connected closed simple non-boundary parallel curves on Σ,
and let S = S(Σ) be the set of multi-curves on Σ, that is, the set of finite unions
of pairwise disjoint curves in S0. For simplicity we usually refer to elements of S
as ‘curves’ rather than ‘multi-curves’, in other words, a curve is not required to be
connected. The geometric intersection number i(α, β) between α, β ∈ S is the least
number of intersections between curves representing the two homotopy classes, that
is

i(α, β) = min
a∈α, b∈β

|a ∩ b|.
Given a surface Σ = Σg,b of finite type and negative Euler characteristic, choose

a maximal set PC = {σ1, . . . , σξ} of homotopically distinct and non-boundary par-
allel loops in Σ called pants curves, where ξ = ξ(Σ) = 3g − 3 + b is the complexity
of the surface. These connected curves split the surface into k = 2g − 2 + b three-
holed spheres P1, . . . , Pk, called pairs of pants. (Note that the boundary of Pi may
include punctures of Σ.) We refer to both the set P = {P1, . . . , Pk}, and the set
PC, as a pants decomposition of Σ.

Now suppose we are given a surface Σ together with a pants decomposition
PC as above. Given γ ∈ S, define qi = qi(γ) = i(γ, σi) ∈ Z>0 for all i = 1, . . . , ξ.
Notice that if σi1 , σi2 , σi3 are pants curves which together bound a pair of pants
whose interior is embedded in Σ, then the sum qi1 + qi2 + qi3 of the corresponding
intersection numbers is even. The qi are usually called the length parameters of γ.

To define the twist parameter twi = twi(γ) ∈ Z of γ about σi, we first have
to fix a marking on Σ. (See D. Thurston’s preprint [28] for a detailed discussion
about three different, but equivalent ways of fixing a marking on Σ.) A way of
specifying the marking is by choosing a set of curves Di, each one dual to a pants
curve σi, see next paragraph for the definition. Then, after isotoping γ into a well-
defined standard position relative to P and to the marking, the twist twi is the
signed number of times that γ intersects a short arc transverse to σi. We make the
convention that if i(γ, σi) = 0, then twi(γ) > 0 is the number of components in γ
freely homotopic to σi.
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Each pants curve σ is the common boundary of one or two pairs of pants whose
union we refer to as the modular surface associated to σ, denoted M(σ). Note that
if σ is adjacent to exactly one pair of pants, M(σ) is a one holed torus, while if σ
is adjacent to two distinct pairs of pants, M(σ) is a four holed sphere. A curve D
is dual to the pants curve σ if it intersect σ minimally and is completely contained
in the modular surface M(σ).

Remark 2.1 (Convention on dual curves). We shall need to consider dual
curves to σi ∈ PC. The intersection number of such a connected curve with σi is
1 if M(σi) a one-holed torus and 2 if it is a four-holed sphere. We adopt a useful
convention introduced in [28] which simplifies the formulae, in such a way as to
avoid the need to distinguish between these two cases. Namely, for those σi for
which M(σi) is Σ1,1, we define the dual curve Di ∈ S to be two parallel copies of
the connected curve intersecting σi once, while if M(σi) is Σ0,4 we take a single
copy. In this way we always have, by definition, i(σi, Di) = 2. See Section 2 of [15]
for a deeper discussion.

There are various ways of defining the standard position of γ, leading to differing
definitions of the twist. In this paper we will always use the one defined by D.
Thurston [28] (which we will denote pi(γ)), but we refer to our previous article [15]
for a further discussion about the different definitions of the twist parameter and for
the precise relationship between them (Theorem 3.5 [15]). With either definition,
a classical theorem of Dehn [6], see also [23] (p 12), asserts that the length and
twist parameters uniquely determine γ ∈ S. This result was described by Dehn in
a 1922 Breslau lecture [6].

Theorem 2.2. (Dehn’s theorem, 1922)
Given a marking (PC;D) = (σ1, . . . , σξ;D1, . . . , Dξ) on Σ, the map i = i(PC;D) : S(Σ) −→
Zξ>0 × Zξ which sends γ ∈ S(Σ) to
(q1(γ), . . . , qξ(γ); tw1(γ), . . . , twξ(γ)) is an injection. The point
(q1, . . . , qξ, tw1, . . . , twξ) is in the image of i (and hence corresponds to a curve) if
and only if:

(i) if qi = 0, then twi > 0, for each i = 1, . . . , ξ.
(ii) if σi1 , σi2 , σi3 are pants curves which together bound a pair of pants whose

interior is embedded in Σ, then the sum qi1 +qi2 +qi3 of the corresponding
intersection numbers is even.

One can think of this theorem in the following way. Suppose given a curve
γ ∈ S, whose length parameters qi(γ) necessarily satisfy the parity condition (ii),
then the qi(γ) uniquely determine γ ∩ Pj for each pair of pants Pj , j = 1, . . . , k,
in accordance with the possible arrangements of arcs in a pair of pants, see for
example [23]. Now given two pants adjacent along the curve σi, we have qi(γ)
points of intersection coming from each side and we have only to decide how to
match them together to recover γ. The matching takes place in the cyclic cover of
an annular neighbourhood of σi. The twist parameter twi(γ) specifies which of the
Z possible choices is used for the matching.

In 1976 William Thurston rediscovered Dehn’s result and extended it to a
parametrisation of (Whitehead equivalence classes of) measured foliation of Σ, see
Fathi, Laudenbach and Poénaru [9] or Penner with Harer [23] for a detailed discus-
sion. Penner’s approach for parametrising ML(Σ) is through train tracks. Using
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them, Thurston also defined a symplectic form on ML(Σ), called Thurston’s sym-
plectic form. Since it will be useful later, we will recall its definition and some
properties in the next section.

2.1.2. Thurston’s symplectic form. We will focus on Penner’s approach, follow-
ing Hamenstad’s notation [10]. We will define train tracks and some other related
notions, so as to be able to define the symplectic form. Then we will present an
easy way to calculate it.

A train track on the surface Σ is an embedded 1–complex τ ⊂ Σ whose edges
(called branches) are smooth arcs with well–defined tangent vectors at the end-
points. At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and con-
tains the switch in its interior. In particular, the branches which are incident on
a fixed switch are divided into “incoming” and “outgoing” branches according to
their inward pointing tangent vectors at the switch. Each closed curve component
of τ has a unique bivalent switch, and all other switches are at least trivalent. The
complementary regions of the train track have negative Euler characteristic, which
means that they are different from discs with 0, 1 or 2 corners at the boundary and
different from annuli and once-punctured discs with no corners at the boundary. A
train track is called generic if all switches are at most trivalent. Note that in the
case of a trivalent vertex there is one incoming branch and two outgoing ones.

Denote B = B(τ) the set of branches of τ . Then a function w : B −→ R>0

(resp. w : B −→ R) is a transverse measure (resp. weighting) for τ if it satisfies the
switch condition, that is for all switches v, we want

∑
i w(ei) =

∑
j w(Ej) where

the ei are the incoming branches at v and Ej are the outgoing ones.
A train track is called recurrent if it admits a transverse measure which is

positive on every branch. A train track τ is called transversely recurrent if every
branch b ∈ B(τ) is intersected by an embedded simple closed curve c = c(b) ⊂ Σ
which intersects τ transversely and is such that Σ − τ − c does not contain an
embedded bigon, i.e. a disc with two corners on the boundary. A recurrent and
transversely recurrent train track is called birecurrent. A geodesic lamination (or a
train track) λ is carried by a train track τ if there is a map F : Σ −→ Σ of class
C1 which is isotopic to the identity and which maps λ to τ in such a way that the
restriction of its differential dF to every tangent line of λ is non–singular. A generic
transversely recurrent train track which carries a complete geodesic lamination is
called complete, where we define a geodesic lamination to be complete if there is no
geodesic lamination that strictly contains it.

Given a generic birecurrent train track τ ⊂ Σ, we define V(τ) to be the col-
lection of all (not necessary nonzero) transverse measures supported on τ and let
W(τ) be the vector space of all assignments of (not necessary nonnegative) real
numbers, one to each branch of τ , which satisfy the switch conditions. By splitting,
we can arrange τ to be generic. Since Σ is oriented, we can distinguish the right
and left hand outgoing branches, see Figure 1. If n,n′ ∈ W(τ) are weightings on
τ (representing points in ML(Σ)), then we denote by bv(n), cv(n) the weights of
the left hand and right hand outgoing branches at v respectively. The Thurston
product is defined as

ΩTh(n,n′) =
1
2

∑
v

bv(n)cv(n′)− bv(n′)cv(n).
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incoming branch

cv(n)

bv(n)

vw
bw(n)

cw(n)

Figure 1. Weighted branches at a switch.

In Theorem 3.1.4 of Penner [23] it is proved that, if the train track τ ⊂ Σ is

complete, then the interior
◦
V (τ) of V(τ) for a complete train track τ ⊂ Σ can be

thought of as a chart on the PIL manifold MLQ(Σ) of rational measured lamina-
tions, that is laminations supported on multi-curves. (PIL is short for piecewise–
integral–linear, see [23, Section 3.1] for the definition.) In addition, in this case,

we can identify W(τ) with the tangent space to MLQ(Σ) at a point in
◦
V (τ). The

Thuston product ΩTh defined above allows us to define a symplectic structure on
the PIL manifold MLQ(Σ).

It is interesting to note that if τ is oriented, then there is a natural map
hτ : W(τ) −→ H1(Σ; R), see Section 3.2 [23], which is related to the Thurston
product by the following result. For a generalisation of this result to the case of an
arbitrary (not necessarily orientable) track τ ∈ Σ, see Section 3.2 [23].

Proposition 2.3 (Lemma 3.2.1 and 3.2.2 [23]). For any train track τ , ΩTh(·, ·)
is a skew-symmetric bilinear pairing on W(τ). In addition, if τ is connected, ori-
ented and recurrent, then for any n,n′ ∈ W(τ), ΩTh(n,n′) is the homology inter-
section number of the classes hτ (n) and hτ (n′).

In Proposition 4.3 of [26], Series relates Thurston product to the Dehn–Thurston
coordinates described above, but her proof works only for the case Σ = Σ1,2, since
she uses a particular choice of train tracks, called canonical train tracks. Our idea
was to use the standard train tracks, as defined by Penner [23] in Section 2.6. The
Dehn-Thurston coordinates, using Penner’s twist p̂i, give us a choice of a standard
model and of specific weights on each edge of the track. Then one can calculate the
Thurston’s product, using the definition above, for a pair of curves γ, γ′ ∈ S sup-
ported on a common standard train track. Finally, using the relationship between
Penner’s and D. Thurston’s twist, as described by Theorem 3.5 by Maloni and Se-
ries [15], one can prove the following result, which will be very important in the
proof of our main theorems. In particular, the standard train track are of two types:
the tracks in the annuli around the pants curves and the tracks in the pair of pants.
The sum of the Thurston’s product in the annuli give us

∑ξ
i=1(qip̂′i − q′ip̂i), using

Penner’s twists, while the sum of the pairs of pants give us some terms, so that the
total sum give us the results that we want, that is the product

∑ξ
i=1(qip′i − q′ipi),

where we use D. Thurston’s twist. We should notice that this result, although we
proved it because we need it in our last section, is really interesting in its own and
it is possible much more can be said from it.

Theorem 2.4. Suppose that loops γ, γ′ ∈ S belongs to the same chart (and
so are supported on a common standard train track) and they are represented by
coordinates i(γ) = (q1, p1, . . . , qξ, pξ), i(γ′) = (q′1, p

′
1, . . . , q

′
ξ, p
′
ξ). Then ΩTh(γ, γ′) =∑ξ

i=1(qip′i − q′ipi).
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In addition, if γ, γ′ are disjoint, then ΩTh(γ, γ′) = 0.

Notice that this symplectic form ΩTh(·, ·) induces a map R2ξ −→ R2ξ defined
by x = (x1, y1, . . . , xξ, yξ) −→ x∗ = (y1,−x1, . . . ,−yξ, xξ) such that

ΩTh(i(γ), i(δ)) = i(γ) · i(δ)∗

where · is the usual inner product on R2ξ. To understand the meaning of the vector
x∗ better, we should recall the last Proposition of Section 3.2 of [23] and some
notation from Bonahon’s work (see his survey paper [2] for a general introduction
to the argument and for other further references). After rigorously defining the
tangent space TαML(Σ) with α ∈ ML(Σ), Bonahon proved in [3] that we can
interpret any tangent vector v ∈ TαML(Σ) as a geodesic lamination with a trans-
verse Hölder distribution. Note that the space W(τ) can be seen as the space of
Hölder distributions on the track τ, since it is defined to be the vector space of all
assignments of not necessary nonnegative real numbers, one to each branch of τ ,
which satisfy the switch conditions. He also characterised which geodesic lamina-
tions with transverse distributions correspond to tangent vectors to ML(Σ). Notice
that if the lamination is carried by the track τ , we can locally identify TαML(Σ)
with W(τ) which is isomorphic to R2ξ.

Theorem 2.5 (Theorem 3.2.4 [23]). For any surface Σ, the Thurston product
is a skew-symmetric, nondegenerate, bilinear pairing on the tangent space to the
PIL manifold ML0(Σ).

2.1.3. Complex of curves and marking complex. In this section, we review the
definitions of the complex of curves and of the marking complex. We will use this
language in the last Section where we will prove our main Theorems. While it is
not essential to use this language, we believe most readers will already be familiar
with these definitions and will find easier to understand the ideas of our proofs. In
addition, these tools will shorten the proofs. We summarise briefly the definition
of simplicial complex and few related definitions which we will need later on, and
we refer to Hatcher [11] for a complete discussion.

Definition 2.6. Given K(0) a set (of vertices), then K ⊂ P(K(0)), where
P(K(0)) is the power set of K(0), is a simplicial complex if

(1) ∅ /∈ K;
(2) ∀τ ⊂ σ ∈ K, τ 6= ∅ ⇒ τ ∈ K.

Given σ ∈ K, we define the link of σ to be the set lkK(σ) = {τ ∈ K|τ ∩ σ =
∅, τ ∪ σ ∈ K}.

Definition 2.7. Given a surface Σ, let C(0)(Σ) be the set of isotopy classes of
essential, nonperipheral, simple closed curves in Σ. Then we define the complex of
curves C(Σ) as the simplicial complex with vertex set C(0)(Σ) and where multicurves
gives simplices. In particular k–simplices of C(Σ) are (k + 1)–tuples {γ0, . . . , γk}
of distinct nontrivial free homotopy classes of simple, nonperipheral closed curves,
which can be realised disjointly.

Note that this complex is obviously finite–dimensional by an Euler character-
istic argument, and is typically locally infinite. If Σ = Σg,b, then the dimension is
dim (C(Σ)) = ξ(Σ)− 1 = 3g − 4 + b.

Note that the cases of lower complexity, which are called sporadic by Masur
and Minsky [18], require a separate discussion. In particular if Σ = Σ0,b with
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b 6 3, then C(Σ) is empty. If Σ = Σ1,0,Σ1,1,Σ0,4, using this definition, C(Σ) is
disconnected (in fact, it is just an infinite set of vertices). So we slightly modify
the definition, in such a way that edges are placed between vertices corresponding
to curves of smallest possible intersection number (1 for the tori, 2 for the sphere).
Finally also in the case of an annulus, that is Σ = Σ0,2 = A, C(Σ) needs to be
defined in a different way, which we do not not discuss here as it is not needed. We
refer the interested to Masur and Minsky [19] for a detailed discussion.

We define now the marking complex. Before defining it, we need to give few
additional definitions.

Definition 2.8. Given a surface Σ, a complete clean marking µ on Σ is a pants
decomposition base(µ) = {γ1, . . . , γξ}, called the base of the marking, together with
the choice of dual curves Di for each i = 1, . . . , ξ such that Di ∩ γj = ∅ for any
j 6= i.

There are two types of elementary moves on a complete clean marking:
(1) Twist : Replace a dual curve Di by another dual curve D′i obtained from

Di by a Dehn–twist or an half–twist around γi.
(2) Flip: Exchange a pair (γi, Di) with a new pair (γ′i, D

′
i) := (Di, γi) and

change the dual curves Dj with j 6= i so that they will satisfy the prop-
erty described in the Definition 2.8. This operation is called cleaning the
marking and it is not uniquely defined.

We will only need to use the base of the markings, so we will not describe these
operations more deeply. The interested reader can refer to [19] for a deeper analysis
on this topic.

Definition 2.9. Given a surface Σ, letMC(0)(Σ) be the set of complete clean
markings in Σ. Then we define the marking complex MC(Σ) as the simplicial
complex with vertex set MC(0)(Σ) and where two vertices are connected by an
edge if the two markings are connected by an elementary move.

2.2. Plumbing construction. In this section we review the plumbing con-
struction which gives us the complex parameters τi for the Maskit embedding. The
idea of the plumbing construction is to manufacture Σ by gluing triply punctured
spheres across punctures. There is one triply punctured sphere for each pair of pants
P ∈ P, and the gluing across the pants curve σj is implemented by a specific pro-
jective map depending on a parameter τj ∈ C. The τj will be the parameters of the
resulting holonomy representation ρτ : π1(Σ) −→ PSL(2,C) with τ = (τ1, . . . , τξ).

More precisely, we first fix an identification of the interior of each pair of pants
Pi to a standard triply punctured sphere P. We endow P with the projective
structure coming from the unique hyperbolic metric on a triply punctured sphere.
Then the gluing is carried out by deleting open punctured disk neighbourhoods
of the two punctures in question and gluing horocyclic annular collars round the
resulting two boundary curves, see Figure 2.

2.2.1. The gluing. First recall (see for example [21] p. 207) that any triply
punctured sphere is isometric to the standard triply punctured sphere P = H/Γ,
where

Γ =
〈(1 2

0 1

)
,

(
1 0
2 1

)〉
.

Fix a standard fundamental domain for Γ, as shown in Figure 3, so that the three
punctures of P are naturally labelled 0, 1,∞. Let ∆0 be the ideal triangle with
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Figure 2. Deleting horocyclic neighbourhoods of the punctures
and preparing to glue.

1−1 0

µ0
µ1

µ∞

Figure 3. The standard fundamental domain for Γ. The white
triangle ∆0 is unshaded.

vertices {0, 1,∞}, and ∆1 be its reflection in the imaginary axis. We sometimes
refer to ∆0 as the white triangle and ∆1 as the black.

With our usual pants decomposition P, fix homeomorphisms Φi from the in-
terior of each pair of pants Pi to P. This identification induces a labelling of the
three boundary components of Pi as 0, 1,∞ in some order, fixed from now on. We
denote the boundary labelled ε ∈ {0, 1,∞} by ∂εPi. The identification also induces
a colouring of the two right angled hexagons whose union is Pi, one being white and
one being black. Suppose that the pants P, P ′ ∈ P are adjacent along the pants
curve σ meeting along boundaries ∂εP and ∂ε′P

′. (If P = P ′ then clearly ε 6= ε′.)
The gluing across σ will be described by a complex parameter τ with =τ > 0, called
the plumbing parameter of the gluing.

Let ∆0 ⊂ H be the ideal ‘white’ triangle with vertices 0, 1,∞. Notice that
there is a unique orientation preserving symmetry Ωε of ∆0 which sends the vertex
ε ∈ {0, 1,∞} to ∞:

Ω0 =
(

1 −1
1 0

)
, Ω1 =

(
0 −1
1 −1

)
, Ω∞ = Id =

(
1 0
0 1

)
.

As described in Figure 4, first we use the maps Ωε to reduce to the case ε =
ε′ =∞. In that case, we first need to reverse the direction in the left triangle ∆0,
by the map J which is a rotation about the origin of an angle π, and then we should
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Tτ

P

∂�(P )

P �

∂��(P �)

Ω0

J

Ω1

Figure 4. The gluing construction when ε = 1 and ε′ = 0.

translate it, by the map Tτ where

J =
(
−i 0
0 i

)
, Tτ =

(
1 τ
0 1.

)
The gluing map between the pants P, P ′ ∈ P is then described by

Ω−1
ε J−1T−1

τ Ωε′ .

For a general discussion, we refer to Section 4 and 5 of [15]. The recipe for
gluing two pants apparently depends on the direction of travel across their common
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boundary. Lemma 4.2 in [15] shows that, in fact, the gluing in either direction is
implemented by the same recipe and uses the same parameter τ .

Remark 2.10 (Relationship with Kra’s construction). As explained in detail
in Section 4.4 of [15], Kra’s plumbing construction (see Kra [14]) is essentially
identical to our construction. The difference is that we implement the gluing in the
upper half space H without first mapping to the punctured disk D∗. In particular
the precise relationship between our plumbing parameter τ and Kra’s one tK is
given by

τ = − i
π

log tK .

2.3. Top Terms’ Relationship. We can now state the main result of our
previous work which will be fundamental for the proof of our main theorems. The
plumbing construction described in Section 2.2 endows Σ with a projective struc-
ture whose associated holonomy representation ρτ : π1(Σ) −→ PSL(2,C) depends
holomorphically on the plumbing parameters τ = (τ1, . . . , τξ). In particular, the
traces of all elements ρ(γ), γ ∈ π1(Σ), are polynomials in the τi. Theorem A of [15]
is a very simple relationship between the coefficients of the top terms of ρ(γ), as
polynomials in the τi, and the Dehn–Thurston coordinates of γ relative to P.

Theorem 2.11 (Top Terms’ Relationship). Let γ be a connected simple closed
curve on Σ, such that its Dehn–Thurston coordinates are i(γ) = (q1, p1, . . . , qξ, pξ).
If γ not parallel to any of the pants curves σi, then Tr ρ(γ) is a polynomial in
τ1, · · · , τξ whose top terms are given by:

Tr ρ(γ) = ±iq2h
(
τ1 +

(p1 − q1)
q1

)q1
· · ·
(
τξ +

(pξ − qξ)
qξ

)qξ
+R,

= ±iq2h
(
τ q11 · · · τ

qξ
ξ +

ξ∑
i=1

(pi − qi)τ q11 · · · τ qi−1
i · · · τ qξξ

)
+R

where
• q =

∑ξ
i=1 qi > 0;

• R represents terms with total degree in τ1 · · · τξ at most q−2 and of degree
at most qi in the variable τi;

• h = h(γ) is the total number of scc-arcs in the standard representation of
γ relative to P, see below.

If q(γ) = 0, then γ = σi for some i, ρ(γ) is parabolic, and Tr ρ(γ) = ±2.

The non-negative integer h = h(γ) is defined as follows. The curve γ is first
arranged to intersect each pants curve minimally. In this position, it intersects a
pair of pants P in a number of arcs joining the boundary curves of P . We call one
of these an scc-arc (short for same-(boundary)-component-connector) if it joins one
boundary component to itself, and denote by h the total number of scc-arcs, taken
over all pants in P. Note that some authors call the scc-arcs waves.

Remark 2.12. As noted in Section 4.2 [15], with our convention the base point
for the gluing construction is when <τi = 1. It would be more natural to have, as
base point, <τi = 0. That can be achieved by changing the fundamental domain for
the standard triply punctured sphere. In particular, one should have as the white
triangle ∆0 the set {z ∈ C|<z ∈ (− 1

2 ,
1
2 ), |z| > 1

2}. This new parameter, equal the



THE ASYMPTOTIC DIRECTIONS 13

old one minus 1, would also make the formula above neater. In fact the formula,
with this new parameter, also called call τi, becomes:

Tr ρ(γ) = ±iq2h
(
τ1 +

p1

q1

)q1
· · ·
(
τξ +

pξ
qξ

)qξ
+R,

= ±iq2h
(
τ q11 · · · τ

qξ
ξ +

ξ∑
i=1

piτ
q1
1 · · · τ qi−1

i · · · τ qξξ

)
+R

From now on we will use this new parameter which is equal the τi−−parameter
in [15] minus 1.

2.4. Maskit embedding. In this section we recall the definition of the Maskit
embedding of Σ, following Series’ article [26], see also [17]. Let R(Σ) be the set
of representations ρ : π1(Σ) −→ PSL(2,C) modulo conjugation in PSL(2,C). Let
M⊂ R be the subset of representations for which:

(i) the group G = ρ (π1(Σ)) is discrete (Kleinian) and ρ is an isomorphism,
(ii) the images of σi, i = 1, . . . , ξ, are parabolic,
(iii) all components of the regular set Ω(G) are simply connected and there is

exactly one invariant component Ω+(G),
(iv) the quotient Ω(G)/G has k + 1 components (where k = 2g − 2 + n if

Σ = Σ(g,n)), Ω+(G)/G is homeomorphic to Σ and the other components
are triply punctured spheres.

In this situation, see for example Section 3.8 of Marden [16], the corresponding 3–
manifold Mρ = H3/G is topologically Σ×(0, 1). Moreover G is a geometrically finite
cusp group on the boundary (in the algebraic topology) of the set of quasifuchsian
representations of π1(Σ). The ‘top’ component Ω+/G of the conformal boundary
may be identified to Σ×{1} and is homeomorphic to Σ. On the ‘bottom’ component
Ω−/G, identified to Σ×{0}, the pants curves σ1, . . . , σξ have been pinched, making
Ω−/G a union of k triply punctured spheres glued across punctures corresponding to
the curves σi. The conformal structure on Ω+/G, together with the pinched curves
σ1, . . . , σξ, are the end invariants of Mρ in the sense of Minsky’s ending lamination
theorem. Since a triply punctured sphere is rigid, the conformal structure on Ω−/G
is fixed and independent of ρ, while the structure on Ω+/G varies. It follows from
standard Ahlfors–Bers theory, using the Measurable Riemann Mapping Theorem
(see again Section 3.8 of [16]), that there is a unique group corresponding to each
possible conformal structure on Ω+/G. Formally, the Maskit embedding of the
Teichmüller space of Σ is the map T (Σ) −→ R which sends a point X ∈ T (Σ) to
the unique group G ∈M for which Ω+/G has the marked conformal structure X.

2.4.1. Relationship between the plumbing construction and the Maskit embed-
ding. In the Section 2.2, given a pants decomposition PC = {σ1, . . . , σξ} of Σ, we
constructed a family of projective structures on Σ, to each of which is associated a
natural holonomy representation ρτ : π1(Σ) −→ PSL(2,C). Proposition 4.4 of [15]
proves that our plumbing construction described above, for suitable values of the
parameters, gives exactly the Maskit embedding of Σ.

Proposition 2.13 (Proposition 4.4 [15]). Suppose that τ ∈ Hξ is such that the
associated developing map Devτ : Σ̃ −→ Ĉ is an embedding. Then the holonomy
representation ρτ is a group isomorphism and G = ρτ (π1(Σ)) ∈M.
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2.5. Three manifolds and pleating rays. LetM be a hyperbolic 3–manifold,
that is a complete 3-dimensional Riemannian manifold of constant curvature −1
such that the fundamental group π1(M) is finitely generated. We exclude the some-
what degenerate case π1(M) has an abelian subgroup of finite index, that is π1(M)
is an elementary Kleinian group. An important subset of M is its convex core CM
which is the smallest, non-empty, closed, convex subset of M . The boundary ∂CM
of this convex core is a surface of finite topological type whose geometry was de-
scribed by W. Thurston [27]. Note that given a hyperbolic 3–manifold M = H3/G,
we can also define the convex core as the quotient CH(Λ)/G where CH(Λ) is the
convex hull of the limit set Λ = Λ(G) of G, see [8] for a detailed discussion on
the pleated structure of the boundary of the convex core. If M is geometrically
finite, then there is a natural homeomorphism between each component of ∂CM
and each component of the conformal boundary Ω/G of M . Each component F of
∂CM inherits an induced hyperbolic structure from M . Thurston also proved such
each component is a pleated surface, that is a hyperbolic surfaces which is totally
geodesic almost everywhere and such that the locus of points where it fails to be
totally geodesic is a geodesic lamination. Formally a pleated surface is defined in
the following way.

Definition 2.14. A pleated surface with topological type S in a hyperbolic
3–dimensional manifold M is a map f : S −→M such that:

• the path metric obtained by pulling back the hyperbolic metric of M by
f is a hyperbolic metric m on S;

• there is an m-geodesic lamination λ such that f sends each leaf of λ to a
geodesic of M and is totally geodesic on S − λ.

In this case, we say that the pleated surface f admits the geodesic lamination λ
as a pleated locus and λ is called the bending lamination and the images of the
complementary components of λ are called the flat pieces (of the pleated surface).

The bending lamination of each component of ∂CM carries a natural transverse
measure, called the bending measure (or pleating measure). In the case M = Σ×R,
there are two components ∂+CM and ∂−CM of ∂CM and we will denote pl± ∈
ML(Σ) the respective pleating measure on each one of them.

We will deal with manifolds for which the bending lamination is rational, that
is, supported on closed curves. The subset of rational measured laminations is
denoted MLQ(Σ) ⊂ ML(Σ) and consists of measured laminations of the form∑k
i=1 aiδγi , where the curves γi ∈ S(Σ) are disjoint and non-homotopic, ai ≥ 0,

and δγi denotes the transverse measure which gives weight 1 to each intersection
with γi. If

∑k
i=1 aiδγi is the bending measure of a pleated surface Σ, then ai is the

angle between the flat pieces adjacent to γi, also denoted θγi . In particular, θγi = 0
if and only if the flat pieces adjacent to γi are in a common totally geodesic subset
of ∂C/G. We take the term pleated surface to include the case in which a closed
leaf γ of the bending lamination maps to the fixed point of a rank one parabolic
cusp of M . In this case, the image pleated surface is cut along γ and thus may be
disconnected. Moreover the bending angle between the flat pieces adjacent to γ is
π. See discussion in [26] or [5].

An important result, due to Bonahon and Otal, about the existence of hyper-
bolic manifolds with prescribed bending laminations is the following. Recall that a
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set of curves {γ1, . . . , γn} in a surface Σ fills the surface if for any γ ∈ S(Σ) there
exist j ∈ {1, . . . , n} such that i(γ, γj) 6= 0.

Theorem 2.15 (Theorem 1 of [4]). Suppose that M is 3–manifold homeo-
morphic to Σ × (0, 1), and that ξ± =

∑
i a
±
i γ
±
i ∈ MLQ(Σ). Then there exists a

geometrically finite group G such that M = H3/G and such that the bending mea-
sures on the two components ∂C±(G) of ∂C(G) equal ξ± respectively, if and only if
a±i ∈ (0, π] for all i and {γ±i , i = 1, . . . , n} fill up Σ (i.e. if i(ξ+, γ) + i(ξ−, γ) > 0
for every γ ∈ S). If such a structure exists, it is unique.

Specialising now to the Maskit embedding M = M(Σ), let ρ = ρτ where
τ = (τ1, . . . , τξ) ∈ Cξ be a representation ρ : π1(Σ) −→ SL(2,C) such that the
image G = G(τ1, . . . , τξ) ∈ M. The boundary ∂C(G) of the convex core has ξ + 1
components, one ∂+C facing Ω+/G and homeomorphic to Σ, and ξ triply punctured
spheres whose union we denote ∂−C. The induced hyperbolic structures on the
components of ∂−C are rigid, while the structure on ∂+C varies. We recall that we
denoted pl+(G) ∈ML(Σ) the bending lamination of ∂+C. Following the discussion
above, we view ∂−C as a single pleated surface with bending lamination π(σ1 +
. . . + σξ), indicating that the triply punctured spheres are glued across the annuli
whose core curves σ1, . . . , σξ correspond to the parabolics Si ∈ G.

Corollary 2.16. A lamination η ∈ MLQ(Σ) is the bending measure of a
group G ∈ M if and only if i(η, σ1), . . . , i(ξ, σξ) > 0. If such a structure exists, it
is unique.

We call η ∈MLQ(Σ) admissible if i(η, σ1), . . . , i(η, σξ) > 0.
2.5.1. Pleating rays. Denote the set of projective measured laminations on Σ

by PML = PML(Σ) and the projective class of η = a1γ1 + . . . + akγk ∈ ML
by [η]. The pleating ray P = P[η] of η ∈ ML is the set of groups G ∈ M for
which pl+(G) ∈ [η]. To simplify notation we write Pη for P[η] and note that Pη
depends only on the projective class of η, also that Pη is non-empty if and only if
η is admissible. In particular, we write Pγ for the ray P[δγ ]. As pl+(G) increases,
Pη limits on the unique geometrically finite group Gcusp(η) in the algebraic closure
M ofM at which at least one of the support curves to η is parabolic, equivalently
so that pl+(G) = θ(a1γ1 + . . . + akγk) with max{θa1, . . . , θαk} = π. We write
Pη = Pη ∪Gcusp(η).

The following key lemma is proved in Proposition 4.1 of Choi and Series [5],
see also Lemma 4.6 of Keen and Series [13]. The essence is that, because the two
flat pieces of ∂C(G) on either side of a bending line are invariant under translation
along the bending line, the translation can have no rotational part.

Lemma 2.17. If the axis of g ∈ G is a bending line of ∂C(G), then Tr(g) ∈ R.

Notice that the lemma applies even when the bending angle θγ along γ vanishes.
Thus if G ∈ Pηγ1,...,γk , where ηγ1,...,γk =

∑k
i=1 aiδγi , we have Tr g ∈ R for any g ∈ G

whose axis projects to a curve γi, i = 1, . . . , k.
In order to compute pleating rays, we need the following result which is a

special case of Theorems B and C of [5], see also [13]. Recall that a codimension-
p submanifold N ↪→ Cn is called totally real if it is defined locally by equations
=fi = 0, i = 1, . . . , p, where fi, i = 1, . . . , n are local holomorphic coordinates for
Cn. As usual, if γ is a bending line we denote its bending angle by θγ . Recall
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that the complex length λ(A) of a loxodromic element A ∈ SL(2,C) is defined by
TrA = 2 cosh λ(A)

2 , see e.g. [5] for details. By construction, Pγ1,...,γk ⊂M ⊂ R(Σ).

Theorem 2.18. The complex lengths λ(γ1), . . . , λ(γk) are local holomorphic
coordinates for R(Σ) in a neighbourhood of Pηγ1,...,γk . Moreover Pηγ1,...,γk is con-
nected and is locally defined as the totally real submanifold =Tr γi = 0, i = 1, 2 of
R. Any k–tuple (f1, f2, . . . , fk), where fi is either the hyperbolic length <λ(γi) or
the bending angle θγi , are global coordinates on Pηγ1,...,γk .

This result extends to Pηγ1,...,γk , except that one has to replace <λ(γi) by
Tr γi in a neighbourhood of a point for which γi is parabolic. In fact, as discussed
in [5, Section 3.1], complex length and traces are interchangeable except at cusps
(where traces must be used) and points where a bending angle vanishes (where
complex length must be used). The parameterisation by lengths or angles extends
to Pγ1,...,γk .

Notice that the above theorem gives a local characterisation of Pηγ1,...,γk as a
subset of the representation variety R and not just ofM. In other words, to locate
P, one does not need to check whether nearby points lie a priori inM; it is enough
to check that the traces remain real and away from 2 and that the bending angle on
one or other of θγi does not vanish. As we shall see, this last condition can easily
be checked by requiring that further traces be real valued.

3. Main theorems

In this section we will prove our main results. As explained in the Introduction,
we will extend to a general hyperbolic surface Σg,n the results proved by Series in
[26] for the case of a twice punctured torus Σ1,2. As already observed by Series,
almost all the results of Section 6 generalise straightforwardy, but for Section 7
some non-trivial extensions are needed. So we will only restate the most important
theorems of Section 6 without proof and refer to the original paper for a more
detailed discussion. All the results of Section 7 still remain true, but we will discuss
how to generalise them more deeply. In addition, we find how to include the case
of ‘exceptional curves’ in the proof of the main theorems (so we will not need to
discuss that case separately). We will also correct some misprints in [26]. All these
remarks will be explained in detail later on.

The key idea for proving these theorems is to understand the geometry of the
top component ∂+C(G) of the convex core for groups G = Gη(θ) ∈ Pη ⊂ M
as θ −→ 0. Recall that the definition of M depends on the choice of a pants
decomposition PC = {σ1, . . . , σξ}, which tells us the curves which will be pinched
in the bottom surface of the associated manifold. Before stating the results, we need
to fix some notation. We will use Series’ notation, so that the interested reader can
refer to the paper [26] more easily.

Notation 3.1. Given a quantity X = X(σi) which depend on the pants curve
σi ∈ PC, we will write X(σi) = O(θe), meaning that X 6 cθe as θ −→ 0 for some
constant c > 0, where e is an exponent (usually e = 0, 1).

Remark 3.2. Note that the estimates below all depends on the lamination η.
So, more precisely, one has X 6 c(η)θe. However it is easily seen, by following
through the arguments, that the dependence on η is always of the form X(σi) 6
cqeθe, where q = i(σi, η) and where, now, c is a universal constant independent of
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η. The dependence of the constants on η is not important for our argument, but it
may be useful elsewhere.

The main theorem in Section 6 of [26] is Proposition 6.1. The proof of this result
relies on three other main lemmas proved in the same section, namely Proposition
6.6 and 6.11 for the asymptotic behaviour of the imaginary part of the parameters
τi and Proposition 6.14 for the real part. (See Series’ article for the proofs.) The
only remark is that the role played in Σ1,2 by the curve γT for the pants curves σ1

and σ2 should be replaced by the curves Di, dual to the pants curve σi. In fact, the
important property of γT is that it intersects σi minimally. In particular, for the
second part of the proof of Corollary 6.5 instead of using Tr[T, S−1

i ] you should use
TrDi, and for Proposition 6.18 instead of calculating iσi(γ, T ) you should deal with
iσi(γ,Di). The ideas for the proofs remain however the same. Finally, we remind
the reader that the twist parameters pi used in this article are twice the value of the
‘old’ parameters (again called pi) used by Series in [26]. The parameters pi we are
using in this article are the twist parameters using D. Thurston’s standard position
(as defined in [15]). A generalisation of Proposition 6.1 of [26] is the following.

Theorem 3.3. Let η =
∑k
i=1 aiδγi be an admissible rational measured lamina-

tion on the surface Σ = Σg,b and let G = Gη(θ) be the unique group in M with
pl+(G) = θη. Then, as θ −→ 0, we have:

<τi = −pi(η)
qi(η)

+O(1) and =τi =
4 +O(θ)
θqi(η)

,

where O(1) denotes a universal bound independent of η.

Corollary 3.4. With the same hypothesis as Theorem 3.3, as θ −→ 0, we
have:

=τj<τi
<τj=τi

=
pi
pj

+O(θ) and
=τi
=τj

=
qj
qi

+O(θ).

In addition, Proposition 6.6 and 6.11 of Series [26] tell us the following result,
which we will need in the proof of Theorem B.

Proposition 3.5. Given an admissible lamination η, suppose G = G(τi) is the
unique group in M such that pl+(G) = θη. Then, along the pleating variety Pη,
we have that, as θ −→ 0:

(i) =τi(1−O(θ)) 6 4
l+σi
6 =τi(1 +O(θ));

(ii) θi(η, σi)(1−O(θ)) 6 l+σi 6 θi(η, σi)(1 +O(θ)).

This results are enough in order to prove Theorem B. We will follow Series’
proof very closely.

Proof of Theorem B. Let η =
∑ξ

1 aiδγi be admissible and let G = Gη(θ) be
the unique group for which pl+(G) = θη. Let h(θ) denote the hyperbolic structure
of ∂C+(G). Let l+σi be the hyperbolic length of the geodesic representative of σi on
the hyperbolic surface ∂+C(G). By Proposition 3.5 (ii), we have that l+σi −→ 0, for
all i = 1, . . . , ξ. So the limit of the structures h(θ) in PML(Σ) is in the linear span
of δσ1 , . . . , δσξ . We want to prove that the limit is the barycentre

∑ξ
1 δσi .

Let δ, δ′ ∈ S. Since σ1, . . . , σξ are a maximal set of simple curves on Σ, the thin
part of h(θ) is eventually contained in collars Ai around σi of approximate width
log( 1

l+σi
) and the lengths of δ, δ′ outside the collars Ai are bounded (with a bound
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depending only on the combinatorics of δ, δ′ and hence the canonical coordinates
i(δ), i(δ′)). By the results of Section 6.4 of [26], the twisting around Ai is bounded.
We deduce that for any curve transverse to σi we have

(3.1) l+δ = 2
ξ∑
i=1

qi(δ) log(
1
l+σi

) +O(1),

see for example Proposition 4.2 of Diaz and Series [7]. By Theorem 3.3 and by

Proposition 3.5 (i) we have
l+σi
l+σj
−→ qj(η)

qi(η) , and since η is admissible, qi(ξ) > 0 for

i = 1, . . . , ξ. Thus
log l+σi
log l+σj

−→ 1. Hence

l+δ
l+δ′
−→

∑ξ
i=1 qi(δ)∑ξ
i=1 qi(δ′)

=
i(δ,

∑ξ
1 δσi)

i(δ′,
∑ξ

1 δσi)
.

The result follows from the definition of convergence to a point in PML(Σ). �

The next results are the key tools for the proofs of Theorems A. We need
to fix more notation. Suppose that γ is a bending line of ∂C+(G) for a group
G(τ) ∈ Pη. The Top Terms’ Relationship 2.11, together with the condition Tr γ ∈ R
of Lemma 2.17, gives asymptotic conditions for τ ∈ Pξ, in terms of the canonical
coordinates i(γ) of γ. In particular, for τ = (τ1, . . . , τξ) ∈ Cξ set τi = xi + iyi, ρ =
‖(y1, . . . , yξ)‖ = (y2

1 + . . .+ y2
ξ )

1
2 , and ηi = yi

ρ . Define

Eγ(τ1, . . . , τξ) = η2 · · · ηξ(q1x1 + p1) + . . .+ η1 · · · ηξ−1(qξxξ + pξ)

= η1 · · · ηξ
ξ∑
i=1

(qixi + pi)
ηi

,

where as usual i(γ) = (q1(γ), p1(γ), . . . , qξ(γ), pξ(γ)) and yi > 0, i = 1, . . . , ξ.
The reason why we introduced this notation is the following result, which gen-

eralises Proposition 7.1 of [26]. Again Series’ proof extends clearly to our case.

Proposition 3.6. Suppose that η ∈ MLQ is an admissible lamination, that
G(τ1, . . . , τξ) ∈ Pη has bending measure pl+(G) = θη, and that γ is a bending line
of η. Then, as θ −→ 0, we have

Eγ(τ1, . . . , τξ) = O(θ).

Now we want to locate the pleating ray Pη where η =
∑k
i=1 aiγi. If G ∈

Pγ1,...,γk , then ∂C+(G) − {γ1, . . . , γk} is flat, so that not only γ1, . . . , γk, but also
any curve δ ∈ lk(γ1, . . . , γk), is a bending line for G, where lk(γ1, . . . , γk) denotes the
link of the simplex (γ1, . . . , γk) in the complex of curves C(Σ). One can think of it
as the set of all curves δ ∈ S = S(Σ) disjoint from γ1, . . . , γk. Thus τ = (τ1, . . . , τξ)
is constrained by the equations

=Tr γi = =Tr δ = 0 ∀i = 1, . . . , k, ∀δ ∈ lk(γ1, . . . , γk)

and hence, using the Proposition 3.6, it is constrained by the following equations

Eγi(τ1, . . . , τξ) +O(θ) = 0, and Eδ(τ1, . . . , τξ) +O(θ) = 0

for all δ ∈ lk(γ1, . . . , γk) and for i = 1, . . . , k. Now we would like to describe how
to solve these equations simultaneously for τ1, . . . , τξ.



THE ASYMPTOTIC DIRECTIONS 19

Following the analysis in Section 7 of [26], we recall that for any curve ω ∈ S
we have

Eω(τ1, . . . , τξ) = i(ω) · u,
where i(ω) = (q1(ω), p1(ω), . . . , qξ(ω), pξ(ω)) and

u = (u11, u12, . . . , uξ1, uξ2) = η1 · · · ηξ(
x1

η1
,

1
η1
, . . . ,

xξ
ηξ
,

1
ηξ

)

= (η2 · · · ηξx1, η2 · · · ηξ, . . . , η1 · · · ηξ−1xξ, η1 · · · ηξ−1)

with xi = <τi, ηi = =τi
ρ as above. We will use linear algebra and Thurston’s

symplectic form ΩTh to solve the equations

i(γi) · u = 0, i(δ) · u = 0

for all δ ∈ lk(γ1, . . . , γk) and for i = 1, . . . , k. As already noted in Section 2.1.2, this
symplectic form induces a map R2ξ −→ R2ξ defined by x = (x1, y1, . . . , xξ, yξ) −→
x∗ = (y1,−x1, . . . , yξ,−xξ) such that

ΩTh(i(γ), i(δ)) = i(γ) · i(δ)∗

where · is the usual inner product on R2ξ.
We need the following Lemma, which generalise Lemma 7.2 of [26]. See Section

2.6 of Penner [23] for a definition of standard train tracks. Note that, although
not necessary, we will use the language of the curve and marking complexes, since
many readers may find it useful. See Section 2.1.3 for the basic definitions.

Lemma 3.7.
(i) Suppose that g = (γ1, . . . , γk) is a simplex in the complex of curves C(Σ).

Then γi are supported on a common standard train track and i(γi) are
independent vectors in i(MLQ(Σ)) ⊂ (Z+ × Z)ξ.

(ii) Given any simplex g = (γ1, . . . , γk) in the complex of curves C(Σ), we can
find curves γk+1, . . . , γξ, Dk+1, . . . , Dξ ∈ lkC(Σ)(g) such that the elements
(γ1, . . . , γξ) and (γ1, . . . , γj , Dj+1, . . . , Dξ) with j = k, . . . , ξ − 1, are sim-
plices in C(Σ) and such that the vectors i(γ1), . . . , i(γξ), i(Dk+1) . . . , i(Dξ)
span a subspace of real dimension 2ξ − k in i(MLQ(Σ)) ⊂ (Z+ × Z)ξ.

Proof. (i): Following Series’ proof, the disjointness of the curves γ1, . . . , γk tells
us they are supported on a common standard train track. The second part of (i)
is proved, as a particular case, in the proof of (ii).
(ii): The idea is to complete g to a pants decomposition of Σ and to consider
the dual curves of the pants curves added. In detail let γk+1, . . . , γξ be such that
{γ1, . . . , γξ} is a pants decomposition of Σ and let Di be the dual curve of γi.
(Note that Di is disjoint from any pants curve γj when j 6= i and intersects γi
twice.) Using the language of Masur and Minsky [19], we can say we have chosen
a complete, clean marking µ = (γ1, . . . , γξ;D1, . . . , Dξ) (that is a vertex in the
marking complex where γ1, . . . , γk are curves in the base of µ) and we define a path
µ = µ0, µ1, . . . , µ2ξ−k by the requirement µi is obtained from µi−1 by flipping γk+i

and Dk + i for i = 1, . . . , ξ − k. The simplices in the statement of the theorem are
then the bases of the markings µi for i = 0, . . . , 2ξ − k.

We want to show that the vectors i(γ1), . . . , i(γξ), i(Dk+1) . . . , i(Dξ) are linear
independent. Without loss of generality, we can assume the map i is defined with
respect to the marking µ0. Indeed, if that it is not the case, the change of coordi-
nates between the map i and a new map i′ defined with respect to a new marking µ′
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is a linear map, which doesn’t change our conclusion about the linear independence
of the vectors. Now the vector i(γi) = (q1, p1, . . . , qξ, pξ) is defined by pi = 1 and
qj = pj = qi = 0 for all j 6= i and the vector i(Di) = (q1, p1, . . . , qξ, pξ) is defined
by qi = 2 and qj = pj = pi = 0 for all j 6= i. (See Remark 2.1 for a description
of the convention on dual curves that we are using.) This proves that the vectors
i(γ1), . . . , i(γξ), i(δk+1) . . . , i(δξ) are linearly independent. �

Now we can state precisely Theorem A of the Introduction.

Theorem 3.8 (Theorem A). Suppose that η =
∑k
i=1 aiγi is admissible (and

k 6 ξ). Let i(η) = (q1(η), p1(η), . . . , qξ(η), pξ(η)). Let Lη : [0,∞) −→ Cξ be the
line t 7→ (w1(t), . . . , wξ(t)) where

wi(t) = −pi
qi

+ it
q1

qi
.

Let (τ1(θ), . . . , τξ(θ)) ∈ Cξ be the point corresponding to the group Gη(θ) with
pl+(G) = θη, so that the pleating ray Pη is the image of the map pη : θ −→
(τ1(θ), . . . , τξ(θ)) for a suitable range of θ > 0. Then Pη approaches Lη as θ −→ 0
in the sense that if t(θ) = 4

θq1
, then

|<τi(θ)−<wi(t(θ))| = O(θ) and |=τi(θ)−=wi(t(θ))| = O(1), i = 1, . . . , ξ.

Remark 3.9. Note that here, in contrast to the approach followed by Series
in [26], we do not need to exclude from our statements the case of ‘exceptional
curves’ and to be dealt with separately. For completeness, we include a definition of
exceptional curves, but the interested reader should see [26] for a deeper discussion.

Definition 3.10. A geodesic lamination η =
∑k
i=1 aiδγi is exceptional if the

matrix (qi(γj))i=1,...,ξ
j=1,...,k

has no maximal rank.

We are now ready to prove the theorem.

Proof of Theorem 3.8. We will use the previous notation, that is we will
write τi(θ) = τi = xi + iyi, ρ = ‖(y1, . . . , yξ)‖, and ηi = yi

ρ , where the dependence
on θ is clear. By Theorem 3.3, we have yi − 4

θqi
= O(1). On the other hand, with

t = t(θ) as in the statement of the theorem, we find =wi(t) = t q1qi = 4
θqi

. Thus for
i = 1, . . . , ξ we have

|=τi(θ)−=wi(t(θ))| = O(1),
as θ −→ 0, as we wanted to prove.

Now, let’s deal with the coordinates xi = <τi(θ). Given γ1, . . . , γk, let γk+1, . . . , γξ,
Dk+1, . . . , Dξ the curves defined by Lemma 3.7. If (τ1, . . . , τξ) ∈ Pη, then the curves
γ1, . . . , γk, γk+1, . . . , γξ, Dk+1, . . . , Dξ are all bending lines of G(τ1, . . . , τξ). It fol-
lows, that

=Tr(γi) = =Tr(Dj) = 0
for i = 1, . . . , ξ and j = k + 1, . . . , ξ. So, by Proposition 3.6, it follows that

Eζ(τ1, . . . , τξ) = O(θ) as θ −→ 0

for ζ ∈ {γ1, . . . , γξ, Dk+1, . . . , Dξ}. Defining η = η1 · · · ηξ and regarding these as
equations in R2ξ for a parameter u ∈ R2ξ, where

u = (u11, u12, . . . , uξ1, uξ2) = η(
x1

η1
,

1
η1
, . . . ,

xξ
ηξ
,

1
ηξ

),
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we have, for ζ ∈ {γ1, . . . , γξ, Dk+1, . . . , Dξ},
(3.2) i(ζ) · u = O(θ).

By Theorem 2.4, we have ΩTh(γi, ζ) = 0 for i = 1, . . . , k for any ζ ∈ lkC(γi) ∪
{γ1, . . . , γk}. Hence i(ζ)·i(γi)∗ = 0 for i = 1, . . . , k and for all ζ ∈ {γ1, . . . , γξ, Dk+1, . . . , Dξ}.
Since i(γ1), . . . , i(γξ), i(Dk+1) . . . , i(Dξ) are independent, it follows that we can
write

(3.3) u(θ) = λ1(θ)i(γ1)∗ + . . .+ λk(θ)i(γk)∗ + η(θ)v(θ)

where v = v(θ) is in the linear span of i(γ1), . . . , i(γξ), i(Dk+1) . . . , i(Dξ) and
||v|| = 1.

Using (3.2) we find that u·v = O(θ) (where the constants depend on i(γ1), . . . , i(γξ),
i(Dk+1) . . . , i(Dξ)). Then v · i(γi)∗ = 0 for i = 1, . . . , k gives η(θ) = O(θ). Equating
the two sides of (3.3) gives

ui1 =
ηxi
ηi

= λ1pi(γ1) + · · ·+ λkpi(γk) +O(θ),

ui2 =
η

ηi
= −λ1qi(γ1)− · · · − λkqi(γk) +O(θ).

(3.4)

So we proved u belongs to the k–dimensional subspace Π generated by i(γ1)∗, . . . , i(γk)∗.
Now we want to prove u is approximately parallel to the vector i(η)∗, that is
(λ1, . . . , λk) is proportional to (a1, . . . , ak). To do this, and to avoid the restriction
to non exceptional curves, we modify slightly Series’ approach.

By Corollary 3.4, we have∥∥∥∥ yiyj − a1qj(γ1) + · · ·+ akqj(γk)
a1qi(γ1) + · · ·+ akqi(γk)

∥∥∥∥ = O(θ)∥∥∥∥xjyiyjxi
− a1pj(γ1) + · · ·+ akpj(γk)
a1pi(γ1) + · · ·+ akpi(γk)

∥∥∥∥ = O(θ).
(3.5)

We can now put this information together as:∥∥∥∥(
yi
yj

+ i
xjyi
yjxi

)− a1Qj(γ1) + · · ·+ akQj(γk)
a1Qi(γ1) + · · ·+ akQi(γk)

∥∥∥∥ = O(θ),

where we defined Qi(γ) = qi(γ) + ipi(γ) in order to keep the notation more neat.
Defining new variables Wi = λ1(qi(γ1) + ipi(γ1)) + · · · + λk(qi(γk) + ipi(γk)), we
have, by (3.4), <Wi = −ui2 +O(θ) and =Wi = ui1 +O(θ). So we have∥∥∥∥<Wj

<Wi
− yi
yj

∥∥∥∥ = O(θ) and
∥∥∥∥=Wj

=Wi
− xjyi
yjxi

∥∥∥∥ = O(θ).

Hence we get

(3.6)
∥∥∥∥(
<Wj

<Wi
+ i
=Wj

=Wi
)− (

yi
yj

+ i
xjyi
yjxi

)
∥∥∥∥ = O(θ).

Now using equations 3.5, 3.6 and the definition of the variables Wi, we get∥∥∥∥λ1Qj(γ1) + · · ·+ λkQj(γk)
λ1Qi(γ1) + · · ·+ λkQi(γk)

− a1Qj(γ1) + · · ·+ akQj(γk)
a1Qi(γ1) + · · ·+ akQi(γk)

∥∥∥∥ = O(θ).

Since this is true for all i, j = 1, . . . , ξ, i 6= j, and since the matrix (Qr(γs))r=1,...,ξ
s=1,...,k

has maximal rank (because, since the curves γ1, . . . , γk are distinct , the lines of that
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matrix are linearly independent) and since the norm of the vector (λ1−a1, . . . , λk−
ak) is one, then we can conclude the following:∥∥∥∥λiλj − ai

aj

∥∥∥∥ = O(θ), ∀i, j = 1, . . . , k, i 6= j,

that is u = αi(η)∗ +O(θ) for some α > 0, as we wanted to prove. �

Remark 3.11. We were able to get rid of the hypothesis of non-exceptionality,
since we looked simultaneously at both the length and the twist of the Dehn–
Thurston coordinates for the distinct curves γ1, . . . , γk.
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