Dehn-Thurston coordinates.

Given a surface Σ, a pants decomposition of Σ is a maximal set $\mathcal{P} = \{\sigma_1, \ldots, \sigma_r\}$ of homotopically distinct and non-boundary parallel loops.

Fix a pants decomposition \mathcal{P} and a marking on it, that is dual curves D_i such that $i(D_i, \sigma_i) = 2\delta_i$. Then, given a curve α, for each pants curve σ_i we define:

- the length parameter $p_i(\alpha) = i(\alpha, \sigma_i)$;
- the twist parameter $q_i(\alpha) = i(\alpha \cap A_i, D_i \cap A_i)$.

where i is the geometric, while ϵ is the algebraic intersection number.

Projective structure and plumbing construction

A complex projective structure on a compact surface Σ is the pair (Δ, ρ) where Δ is a map $D : \Sigma \to \tilde{C}$ from the universal covering space Σ to \tilde{C} called the developing map and ρ is a homomorphism $\rho : \pi_1(\Sigma) \to \text{PSL}(2, \mathbb{C})$ equivariant with respect to D called the holonomy representation.

Kra's plumbing construction endows Σ with a projective structure as follows. Glue, or 'plumb', adjacent pants as described in the recipe below. The gluing across the ith pants curve is defined by $\tau_i \in \mathbb{C}$. The associated holonomy representation $\rho : \pi_1(\Sigma) \to \text{PSL}(2, \mathbb{C})$ gives a projective structure on Σ which depends holomorphically on the τ_i.

Gluing cusps around horocycles.

To glue (P_i, ϵ_i) and (P_j, ϵ_j) where $\epsilon_i, \epsilon_j \in \{0, 1, \infty\}$ we have to:

1. Label the incoming and the outgoing oriented edges λ_i and λ_j.
2. Map each pair of pants P_i and P_j to \mathbb{H} by standard charts $\Phi_i : P_i \to \mathbb{H}$ and $\Phi_j : P_j \to \mathbb{H}$.
3. Map each side by standard maps $\Omega_i : \mathbb{H} \to \mathbb{H}$ and $\Omega_j : \mathbb{H} \to \mathbb{H}$ in such a way to take ϵ_i and ϵ_j to ∞ and oriented lines to oriented lines.
4. Identify the pictures (or rather annuli round cusps) using a translation fixing ∞:
 1. first do $j : \mathbb{H} \to \mathbb{H}$ defined by $f(z) = -\bar{z}$ to get the same orientations;
 2. then apply the translation $T_\tau : \mathbb{H} \to \mathbb{H}$ defined by $T_\tau(z) = z + \tau_i$ for a suitable $\tau_i \in \mathbb{C}$.

So the overlap map is of the form:

$$\Omega_j^{-1} T_\tau^{-1} \Omega_i.$$

The Maskit embedding

- **Figure**: The Maskit embedding of the once punctured torus

The Maskit embedding is a polynomial in the Maskit embedding.

Main theorem: the trace formula

The main result of this paper is a very simple relationship between the coefficients of the top terms of $\rho(\gamma)$, as polynomials in the τ_i, and the Dehn-Thurston coordinates of γ relative to the pants decomposition \mathcal{P}.

Let γ be a connected simple closed curve on the hyperbolic surface Σ, not parallel to any of the pants curves σ_i. Let ρ be the holonomy representation defined by Kra's plumbing construction. Then $\text{Tr} \rho(\gamma)$ is a polynomial in τ_1, \ldots, τ_r whose top terms are given by:

$$\text{Tr} \rho(\gamma) = \pm \frac{p_2(q_1, \ldots, q_r)}{q_1} \cdots \frac{p_l(q_1, \ldots, q_r)}{q_l} + R,$$

where

- $q = \sum q_i > 0$;
- R represents terms with total degree in τ_1, \ldots, τ_r at most $q - 2$ and of degree at most q_i in the variable τ_i;
- $h = h(\gamma)$ is the total number of sec-arcs in the standard representation of γ relative to \mathcal{P}, see below.

If $q = 0$, then $\gamma = \sigma_i$ for some i, $\rho(\gamma)$ is parabolic, and $\text{Tr} \rho(\gamma) = \pm 2$.

The trace formulae could be used to find the asymptotic directions of pleating rays in the Maskit embedding.

Maskit embedding

If the representation ρ described above is free and discrete, then the resulting hyperbolic 3-manifold $M = \mathbb{H}^3/\rho(\pi_1(\Sigma))$ lies on the boundary of the quasifuchsian space $\Omega \mathcal{T}(\Sigma)$. One end of M consists of a union of triply punctured spheres obtained by pinching in Σ the curves σ_i, defining \mathcal{P}. Suppose that, in addition, $\rho(\pi_1(\Sigma))$ is geometrically finite and that the other end $\Omega \mathcal{T}(\rho(\pi_1(\Sigma)))$ of M is a Riemann surface homeomorphic to Σ. Since the triply punctured spheres are rigid, it follows that the Riemann surface structure of $\Omega \mathcal{T}(\rho(\pi_1(\Sigma)))$ runs over the Teichmüller space $\mathcal{T}(\Sigma)$ of Σ. The image of the space of all such groups in the character variety \mathcal{R} of Σ is called the Maskit embedding of $\mathcal{T}(\Sigma)$, see figure below.

Our construction, for suitable values of the parameters τ_i, gives exactly the Maskit embedding of $\mathcal{T}(\Sigma)$.

References