Plumbing Constructions in Quasifuchsian Space.

Sara Maloni

University of Warwick, University of Toulouse

August 8, 2012
Table of content

1. Dehn–Thurston coordinates
2. Maskit embedding and pleating ray
3. Gluing construction
4. Main theorems
5. Other slices of Quasifuchsian Space
Dehn–Thurston coordinates

Given a pants decomposition $\mathcal{P} = \{\sigma_1, \ldots, \sigma_\xi\}$ on a surface Σ, Dehn defined an injection $i : S = S(\Sigma) \longrightarrow \mathbb{Z}_{\geq 0}^\xi \times \mathbb{Z}^\xi$ by

$$i(\gamma) = (q_1(\gamma), \ldots, q_\xi(\gamma); tw_1(\gamma), \ldots, tw_\xi(\gamma)).$$

1. $q_i(\gamma) = i(\gamma, \sigma_i) \in \mathbb{Z}_{\geq 0}$ are the length parameters;
2. $tw_i(\gamma) \in \mathbb{Z}$ are the twist parameters of γ.

Figure: Penner and Harer twist $\hat{p}_i = -1$ and D. Thurston’s twist $p_i = 0$.

DT coordinates

Maskit embedding

Gluing construction

Main theorems

Other slices
Relation between \(\hat{p}_i \) and \(p_i \)

Suppose two pairs of pants meet along \(\sigma = E \in \mathcal{PC} \). Label their respective boundary curves \((A, B, E)\) and \((C, D, E)\) in clockwise order.

Theorem (M–Series)

Let \(\gamma \in S \) and let \(\hat{p}_i \) and \(p_i \) denote the PH–twist and the DT–twist around \(\sigma \). Then

\[
\hat{p}_i = \frac{p_i + l(A, E; B) + l(C, E; D) - q_i}{2},
\]

where \(l(X, Y; Z) \) denotes the number of strands of \(\gamma \cap P \) running from the boundary curve \(X \) to the boundary curve \(Y \) in the pair of pants \(P = (X, Y, Z) \).
Let τ_{Th} be Thurston symplectic form on $S \subset \text{ML}_\mathbb{Q}(\Sigma)$.

Theorem (M.)

Suppose that loops $\gamma, \gamma' \in S$ belongs to the same chart and let $i(\gamma) = (q_1, \ldots, q_\xi; p_1, \ldots, p_\xi)$, $i(\gamma') = (q'_1, \ldots, q'_\xi; p'_1, \ldots, p'_\xi)$ their DT coordinates. Then

$$\tau_{\text{Th}}(\gamma, \gamma') = \frac{1}{2} \sum_{i=1}^{\xi} (q_ip'_i - q'_ip_i).$$

In addition, if γ, γ' are disjoint, then $\tau_{\text{Th}}(\gamma, \gamma') = 0$.
Basic definitions on Kleinian groups

PSL(2, \mathbb{C}) acts on \mathbb{H}^3 by isometries and on \hat{\mathbb{C}} = \mathbb{C} \cup \infty by conformal maps.

Definition

- A **Kleinian group** \(G \) is a discrete (torsion-free) subgroup of PSL(2, \mathbb{C}).
- The **limit set** \(\Lambda(G) \) is the set of accumulation points of the action of \(G \) on \(\hat{\mathbb{C}} \).
- The **regular set** \(\Omega(G) \) is \(\hat{\mathbb{C}} - \Lambda(G) \).
- A **Fuchsian group** is a discrete subgroup of PSL(2, \mathbb{R}), or, equivalently, a Kleinian group \(G \) such that \(\Lambda(G) \) is a circle.
- A **Quasifuchsian group** is a Kleinian group \(G \) such that \(\Lambda(G) \) is a topological circle, or, equivalently, a quasi-conformal deformation of a Fuchsian group.
The Maskit embedding

The **Maskit slice** \mathcal{M} is the set of representations $\rho : \pi_1(\Sigma) \to PSL(2, \mathbb{C})$ (up to conjugation in $PSL(2, \mathbb{C})$) such that:

1. $G_\rho = \rho(\pi_1(\Sigma))$ is discrete and ρ is an isomorphism,
2. $\rho(\sigma_i)$ are parabolic,
3. all components of $\Omega(G)$ are simply connected and there is exactly one invariant component $\Omega^+(G)$,
4. $\Omega^+(G)/G$ is homeomorphic to Σ and the other components are triply punctured spheres.

Figure: Quasifuchsian Group and Maskit Group.
Picture of the Maskit embedding for the once punctured torus $\Sigma_{1,1}$

Figure: The Maskit embedding $\mathcal{M}(\Sigma_{1,1})$ for the once punctured torus. Picture courtesy David Wright.
A **pleated surface** is a hyperbolic surface which is totally geodesic almost everywhere and such that the locus of points where it fails to be totally geodesic is a geodesic lamination.

By Thurston, each component of the boundary $\partial C(G)/G$ of the convex core is a pleated surface.

Given $\rho \in \mathcal{M}$, denote $\beta(\rho) \in \text{ML}(\Sigma)$ the bending lamination of $\partial C^+/G$, where $G_\rho = \rho(\pi_1(\Sigma))$.

Given $[\eta] \in \text{PML}(\Sigma)$, the **pleating ray** $\mathcal{P} = \mathcal{P}[\eta]$ of $[\eta]$ is the set of elements $\rho \in \mathcal{M}$ for which $\beta(\rho) \in [\eta]$.
Let Σ be a surface with $\chi(\Sigma) < 0$ and let $\mathcal{PC} = \{\sigma_1, \ldots, \sigma_\xi\}$ be a pants decomposition on it. Let $\mu = (\mu_1, \ldots, \mu_\xi) \in \mathbb{H}^\xi$.

STEP 1: Any triply punctured sphere is isometric to $\mathbb{P} = \mathbb{H}/\Gamma$, where

$$\Gamma = \langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \rangle.$$

Identify any P_i to the fundamental domain Δ of Γ by the homeomorphisms

$$\Phi_i : \text{int}(P_i) \longrightarrow \Delta.$$
Gluing construction

STEP 2: Let $\sigma_i = \partial_\epsilon P \cap \partial_\epsilon' P'$, then the gluing is described by

$$
\Omega_\epsilon^{-1} J^{-1} T_{\mu_i}^{-1} \Omega_{\epsilon'}
$$

where $\mu_i \in \mathbb{H}$ is the **gluing parameter** and $\Omega_\infty = \text{Id}$,

$$
\Omega_0 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \Omega_1 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},
$$

$$
J = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, \quad T_{\mu_i} = \begin{pmatrix} 1 & \mu_i \\ 0 & 1 \end{pmatrix}.
$$
This describes a (complex) projective structure on Σ, which depends on the gluing parameter $\mu = (\mu_1, \ldots, \mu_\xi) \in \mathbb{H}^\xi$. In particular, given $\mu \in \mathbb{H}^\xi$, we define a developing map $\text{Dev}_\mu : \tilde{\Sigma} \longrightarrow \hat{\mathbb{C}}$ and a holonomy map $\rho_\mu : \pi_1(\Sigma) \longrightarrow PSL(2, \mathbb{C})$.

Theorem (M–Series)

If $\text{Dev}_\mu : \tilde{\Sigma} \longrightarrow \hat{\mathbb{C}}$ is an embedding, then ρ_μ is a group isomorphism and $\rho_\mu \in \mathcal{M}$.

In addition, these representations ρ_μ parametrise \mathcal{M}.
Let $\rho_\mu: \pi_1(\Sigma) \rightarrow PSL(2, \mathbb{C})$ be the holonomy described by the gluing construction. Let γ be a simple closed curve on Σ, not parallel to any of the pants curves σ_i.

Theorem (Top Terms’ Formula, M – Series)

$$
\text{Tr} \rho_\mu(\gamma) = \pm i^q 2^h \left(\mu_1 + \frac{(p_1 - q_1)}{q_1} \right)^{q_1} \cdots \left(\mu_\xi + \frac{(p_\xi - q_\xi)}{q_\xi} \right)^{q_\xi} + R,
$$

where

- $q = \sum_{i=1}^\xi q_i > 0$;
- R represents terms with total degree in $\mu_1 \cdots \mu_\xi$ at most $q - 2$;
- $h = h(\gamma)$ is the total number of waves.
Asymptotic direction of pleating rays

Theorem (Asymptotic direction, M, Series, Keen–Series)

Suppose that $\eta = \sum_{i=1}^{\xi} a_i \gamma_i$ is an admissible measured lamination on Σ. Then, as the bending measure $\beta(G_{\mu}) \in \eta$ tends to zero, the pleating ray $P[\eta]$ in \mathcal{M} approaches the line

$$\Re \mu_i = -\frac{p_i(\eta)}{q_i(\eta)} + 1, \quad \Im \mu_1 = \frac{q_j(\eta)}{q_1(\eta)},$$

where $(q_1(\eta), \ldots, q_\xi(\eta); p_1(\eta), \ldots, p_\xi(\eta))$ are the Dehn–Thurston coordinates for η.
Generalised gluing construction

Given a pants decomposition $\mathcal{PC} = \{\sigma_1, \ldots, \sigma_\xi\}$ on Σ, let $c = (c_1, \ldots, c_\xi) \in \mathbb{R}_+^\xi$ and $\mu = (\mu_1, \ldots, \mu_\xi) \in (\mathbb{C}/2i\pi)^\xi$. We describe a (complex) projective structure on Σ with developing map $\text{Dev}_{c,\mu}$ and holonomy map $\rho_{c,\mu}$. In particular, $\rho_{c,\mu}(\gamma)$ is hyperbolic and $\text{Tr} \rho_{c,\mu}(\gamma) = \pm 2 \cosh(c_j)$.

Theorem (M.)

If $c \rightarrow 0$ keeping μ fixed, where $\mu_i = \frac{i\pi - \mu_i}{c_i}$, then

$$\rho_{c,\mu} \rightarrow \rho_{\mu}.$$
Linear slices \mathcal{L}_c

Given $\mathcal{PC} = \{\sigma_1, \ldots, \sigma_\xi\}$, the complex Fenchel–Nielsen coordinates $\text{FN}_C : \mathcal{QF}(\Sigma) \longrightarrow (\mathbb{C}_+/2i\pi)^\xi \times (\mathbb{C}/2i\pi)^\xi$ are defined by

$$\text{FN}_C(G) = (\lambda_1, \ldots, \lambda_\xi, \tau_1, \ldots, \tau_\xi),$$

where λ_i are the complex length and τ_i are the complex twist of the pants curve σ_i.

Definition

Given $c \in \mathbb{R}_+^\xi$, we define the c–slice (or the linear slice) \mathcal{L}_c to be the set

$$\mathcal{L}_c = \{(c, \tau) \in \text{FN}_C (\mathcal{QF}(\Sigma)) \mid \text{sign}(\Im \tau_1) = \ldots = \text{sign}(\Im \tau_\xi)\}.$$
Connectedness of linear slices \mathcal{L}_c

Figure: The linear slice \mathcal{L}_c when $c = 1, 2, 4, 5, 10, 20.$
Connectedness of linear slices \mathcal{L}_c