Polyhedra inscribed in a hyperboloid and anti-de Sitter geometry.

Jeffrey Danciger 1 Sara Maloni 2 Jean-Marc Schlenker 3

1University of Texas at Austin
2Brown University
3University of Luxembourg

AMS Sectional Meeting, UMBC
March 28, 2014
Historical introduction

Question (Steiner (1832))

What are the graphs obtained as 1-skeletons of a convex polyhedron in \mathbb{R}^3?

Theorem (Steinitz (1916))

An embedded graph in the sphere S^2 is the 1-skeleton of a convex polyhedron in \mathbb{R}^3 if and only if it is 3-connected (that is, suppressing 2 vertices leaves a connected graph).

Question (Steiner (1832))

Which ones are obtained from polyhedra inscribed in S^2?
Polyhedra inscribed in a sphere

Theorem (Steinitz (1927))

Some of those combinatorics cannot be realized by polyhedra inscribed in a sphere.

Theorem (Hodgson-Rivin-Smith (1992))

The answer depends on the existence of a solution to a set of linear equations and inequalities. (It can be decided in polynomial time.)

Question

What about polyhedra inscribed in a hyperboloid?
Our results

Let Γ be a graph embedded in S^2, we call S_Γ [resp. H_Γ] the space of convex polyhedra inscribed in the sphere [resp. in the hyperboloid] with 1-skeleton Γ, up to projective transformations leaving the sphere [resp. hyperboloid] invariant.

Theorem (Danciger-M.- Schlenker)

$H_\Gamma \neq \emptyset \iff S_\Gamma \neq \emptyset$ and Γ admits a Hamiltonian cycle.

Theorem (Danciger-M.- Schlenker)

(i) If $H_\Gamma \neq \emptyset$, then $S_\Gamma \neq \emptyset$.
(ii) If $S_\Gamma \neq \emptyset$, then \{c.c. of H_Γ\} \longleftrightarrow \{Hamiltonian cycles in Γ\}.
Let Γ be a graph embedded in S^2, and let Γ^* be the graph dual to Γ.

Theorem (Rivin (1992))

Let $\theta : \Gamma^* \to (0, \pi)$. There is a non-planar convex ideal polyhedron in \mathbb{H}^3 with combinatorics given by Γ and exterior dihedral angles given by θ if and only if:

(i) For any simple closed curve c in Γ^* bounding a face, the sum of the values of θ on the edges of c is 2π.

(ii) For any simple closed curve c in Γ^* not bounding a face, the sum of the values of θ on the edges of c is $> 2\pi$.

Rivin extended a result proved by Andreev (1970) for compact and ideal polyhedra P of finite volume with dihedral angles $\leq \pi/2$.
Ideal hyperbolic polyhedra

Induced metrics

Theorem (Rivin (1992))

Any complete hyperbolic metric of finite area on the sphere minus N points, with N ≥ 3, is induced on a unique ideal hyperbolic polyhedron.

Rivin extended a result proved by Alexandrov (1944-50) for compact polyhedra.
Anti-de Sitter geometry

The Anti-de Sitter space AdS^3 is

$$\text{AdS}^3 = \{ x \in \mathbb{R}^{2,2} : \langle x, x \rangle_{2,2} < 0 \} / \sim ,$$

where $x \sim y$ \iff $\exists \lambda \in \mathbb{R}_+ \text{ such that } x = \lambda y$, with the induced Lorentzian metric. Its isometry group is $\text{PO}(2, 2)$. The ideal boundary is

$$\partial_\infty \text{AdS}^3 = \{ x \in \mathbb{R}^{2,2} : \langle x, x \rangle_{2,2} = 0 \} / \sim .$$

A convex ideal AdS polyhedron is a convex polyhedron in AdS^3 with its vertices on the ideal boundary. The faces of an ideal polyhedron are space-like. The dihedral angles along the edges of the equator (called exterior) are in $(-\infty, 0)$, while the other dihedral angles lie in $(0, +\infty)$.
Dihedral angles

Let Γ^* be the graph dual to Γ.

Theorem (Danciger-M.-Schlenker)

Let $\theta : \Gamma^* \rightarrow \mathbb{R}_{\neq 0}$. There is a non-planar convex ideal AdS polyhedron with combinatorics given by Γ and exterior dihedral angles given by θ if and only if:

(i) The edges of Γ on which $\theta < 0$ form a Hamiltonian cycle in Γ.

(ii) For any simple closed curve c in Γ^* bounding a face, the sum of the values of θ on the edges of c is zero.

(iii) For any simple closed curve c in Γ^* not bounding a face, and containing at most two edges where $\theta < 0$, the sum of the values of θ on the edges of c is positive.
Theorem (Danciger-M.- Schlenker)

Let \(m \) be a finite-volume hyperbolic metric on \(S^2 \) with \(N \) cusps, and let \(e \) be a closed path going through each vertex exactly once. Then there is a unique ideal polyhedron \(P \subset \text{AdS}^3 \) (up to global isometry) so that the induced metric on \(P \) is isometric to \(m \) and its path of external edges is homotopic to \(e \).
Now we will prove the following:

Theorem (Danciger-M.- Schlenker)

\[\mathcal{H}_\Gamma \neq \emptyset \iff S_\Gamma \neq \emptyset \text{ and } \Gamma \text{ admits a Hamiltonian cycle.} \]

Let \(P \in S_\Gamma \) and let \(\gamma \) be an Hamiltonian cycle for \(\Gamma \). Let \(\theta : \Gamma_1 \rightarrow (0, \pi) \) be its dihedral angles which satisfies the conditions of Rivin’s theorem on dihedral angles. Then we can define \(\theta' : \Gamma_1 \rightarrow \mathbb{R} \neq 0 \) by

- \(\theta'(e) = \theta(e) \) if is not an edge of \(\gamma \),
- \(\theta'(e) = \theta(e) - \pi \) if is an edge of \(\gamma \).

Then \(\theta' : \Gamma_1 \rightarrow \mathbb{R} \) satisfies the conditions of our theorem on dihedral angles. Therefore \(\mathcal{H}_\Gamma \neq \emptyset \).
Let $P \in \mathcal{H}_\Gamma$. Let $\theta : \Gamma_1 \longrightarrow \mathbb{R} \neq 0$ be its dihedral angles, and let γ be the cycle of its exterior edges. We can choose $t > 0$ such that:

- $\forall e \in \Gamma_1$ of Γ, $t\theta(e) \in (-\pi, \pi)$;
- \forall s. c. c. c in Γ^* not bounding a face, and intersecting γ in k points, then the sum of the values of $t\theta$ on the edges of c is $> (2 - k)\pi$.

Moreover, $t\theta(e) < 0 \iff e$ is an edge of γ.

Let $\theta' : \Gamma_1 \longrightarrow (0, \pi)$ be defined by:

- $\theta'(e) = t\theta(e)$ if is not an edge of γ,
- $\theta'(e) = \pi + t\theta(e)$ if is an edge of γ.

Then $\theta' : \Gamma_1 \longrightarrow (0, \pi)$ satisfies the conditions of Rivin’s theorem on dihedral angles. Therefore $S_\Gamma \neq \emptyset$.

Danciger, Maloni, Schlenker
Proof of the theorem on dihedral angles

Definitions

Let \(\Gamma \) be a 3-connected graph embedded in \(S^2 \), and let \(\gamma \) be an simple closed curve in \(\Gamma \) going through each vertex.

- We call \(\mathcal{A}_{\Gamma,\gamma} \) the space of maps \(\theta : \Gamma_1 \to \mathbb{R} \) such that:
 - for all \(e \in \Gamma \), \(\theta(e) < 0 \) if \(e \) is in \(\gamma \), \(\theta(e) > 0 \) otherwise,
 - the sum of the values of \(\theta \) on the boundary of any face of \(\Gamma^* \) is zero,
 - the sum of the values of \(\theta \) on any other cycle in \(\Gamma^* \) intersecting \(\gamma \) at most twice is positive.

- We denote by \(\mathcal{P}_{\Gamma,\gamma} \) the space of polyhedral embeddings of \(S^2 \) in \(\text{AdS}^3 \) with image an ideal polyhedron with 1-skeleton \(\Gamma \) such that the cycle of exterior edges is \(\gamma \).

- The map \(\Psi_{\Gamma,\gamma} : \mathcal{P}_{\Gamma,\gamma} \to \mathcal{A}_{\Gamma,\gamma} \) sends a polyhedron to its exterior dihedral angles.
Proof of the theorem on dihedral angles

Sketch of the proof

Lemma (Danciger-M.- Schlenker)

\[\Psi_{\Gamma, \gamma} \text{ is a proper local homeomorphism.} \]

(Hence \(\Psi_{\Gamma, \gamma} : \mathcal{P}_{\Gamma, \gamma} \rightarrow \mathcal{A}_{\Gamma, \gamma} \) is a covering.)

Lemma (Danciger-M.- Schlenker)

1. As \(t \rightarrow 0 \), \(P_t \) converges to a flat polyhedron \(P_0 \).
2. For any \(\Gamma \) and \(\gamma \) such that \(\mathcal{A}_{\gamma, \Gamma} \neq \emptyset \), \(\exists \) a nbhd \(U \) of \(\mathcal{P}_{\gamma, \gamma}^0 \) and a nbhd \(V \) of 0 in \(\mathcal{A}_{\gamma, \Gamma} \) s. t. \(\Psi_{\gamma, \Gamma}|_U : U \rightarrow V \) is a homeomorphism.

- \(\exists \) a nbhd \(U \) of \(\mathcal{P}_{\gamma, \gamma}^0 \) in \(\mathcal{P}_{\gamma, \Gamma} \) and a nbhd \(V \) of 0 in \(\mathcal{A}_{\gamma, \Gamma} \) s. t. \(\forall \theta \in V \) has a unique inverse image in \(U \) by \(\Psi_{\gamma, \Gamma} \).
- Any \(\theta \in V \) can have inverse images only in \(U \).

(Hence \(\Psi_{\Gamma, \gamma} : \mathcal{P}_{\Gamma, \gamma} \rightarrow \mathcal{A}_{\Gamma, \gamma} \) has degree one, so is a homeo.)
End
Proof of the theorem on induced metrics

Definitions

- By \mathcal{P}_γ the space of ideal polyhedral embeddings of S^2 in AdS^3 with vertices exactly at the v_i, with γ isotopic to the (oriented) equator, considered up to global isometry.

- By \mathcal{M}_γ the space of complete hyperbolic metrics on the sphere S^2 with cusps at the v_i, marked by the closed curve γ, considered up to isotopy.

- By $\Phi_\gamma : \mathcal{P}_\gamma \rightarrow \mathcal{M}_\gamma$ the map sending an ideal AdS polyhedral embedding to its induced metric.
Sketch of the proof

Lemma (Danciger-M.- Schlenker)

ϕ_γ is a proper local homeomorphism.

(Hence ϕ: P → M is a covering.)

Lemma (Danciger-M.- Schlenker)

P_γ is connected, and M_γ is connected and simply connected.

(Hence ϕ: P → M is a homeomorphism.)
Side product results: Earthquakes on ideal polygons

As a side product of our study, we prove a discrete version of Thurston’s Earthquake Theorem:

Theorem (Danciger-M.-Schlenker)

Let p, p' be two ideal hyperbolic polygons, both with vertices v_1, \ldots, v_n. There is a unique measured lamination λ on p so that the image of p by the left earthquake along λ is p'.

Given a combinatoric Γ with a Hamiltonian cycle γ such that $\theta \in A_{\gamma, \Gamma}$, we define $E_l(\theta_+)\circ E_l(\theta_-) \colon \mathcal{P} \to \mathcal{P}$ has a unique fix point.