The geometry of symplectic quasi-Hitchin representations.

Sara Maloni
University of Virginia
(joint work in progress w/ D. Alessandrini & A. Wienhard)

December 20, 2018
Fuchsian and quasi-Fuchsian theory

Every quasi-Fuchsian \(\rho: \pi_1(\Sigma) \longrightarrow \text{SL}(2, \mathbb{C}) \cong \text{Sp}(2, \mathbb{C}) \) acts p.d. on \(\mathbb{H}^3 \) and on \(\Omega_\rho \subset \partial \mathbb{H}^3 = \mathbb{C}P^1 \cong \text{Lag}(\mathbb{C}^2) \).

- \(M_\rho = \mathbb{H}^3 / \rho \cong \Sigma \times \mathbb{R} \);
- \(\Omega_\rho / \rho \cong \Sigma^+ \sqcup \Sigma^- \).

\textbf{Question}

What are ‘quasi-Fuchsian’ representations in \(\text{Sp}(4, \mathbb{C}) \)?

\textbf{Question}

What is the topology of the quotient \(\Omega_\rho / \rho \) for \(\Omega_\rho \subset \text{Lag}(\mathbb{C}^4) \)?
Symplectic spaces and group

- Symplectic space \((V_K, \omega_K)\) (with \(K = \mathbb{R}, \mathbb{C}\)).
- Symplectic group \(\text{Sp}(V_K, \omega_K)\).
- \(L \subset V_K\) isotropic if \(L \subset L^\perp_{\omega_K}\) and Lagrangian if \(L = L^\perp_{\omega_K}\).

Example

- \(V_\mathbb{C} = \mathbb{C}^4 = \mathbb{C}^{(3)}[X, Y]\) and \(\omega_\mathbb{C}\) defined by \(\omega_\mathbb{C}(X^3, Y^3) = 1\) and \(\omega_\mathbb{C}(X^2 Y, XY^2) = -\frac{1}{3}\).
- \(\text{Sp}(V_\mathbb{C}, \omega_\mathbb{C}) \cong \text{Sp}(4, \mathbb{C})\).
Symplectic Anosov representations

Definition (Labourie)

\[\rho: \pi_1(\Sigma) \longrightarrow \text{Sp}(2n, \mathbb{K}) \text{ is } Q_1-\text{Anosov} \text{ if } \exists \text{ continuous } \rho-\text{equivariant } \xi_1^{\rho}: \partial_\infty(\pi_1(\Sigma)) \longrightarrow \mathbb{P}(\mathbb{K}^{2n}) \text{ s.t.} \]

1. \(\xi_1^{\rho} \) is dynamics preserving \((\forall \gamma \in \pi_1(\Sigma), \xi_1^{\rho}(\gamma^\pm) = \rho(\gamma)^\pm) \);
2. \(\xi_1^{\rho} \) transverse \((\forall t \neq s, \xi_1^{\rho}(t) \text{ and } \xi_1^{\rho}(s) \text{ are transverse}) \);
3. + contraction/expansion properties.

Example

- **Hitchin reps**: conn. comp. of \(\mathcal{X}(\pi_1(\Sigma), \text{Sp}(2n, \mathbb{R})) \) containing

 Fuchsian reps \(\pi_1(\Sigma) \xrightarrow{\text{d. f.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irred.}} \text{Sp}(2n, \mathbb{R}). \)

- **\(Q_1 \)-quasi-Hitchin reps**: deformation of Hitchin reps

 \(\pi_1(\Sigma) \xrightarrow{\text{d. f.}} \text{SL}(2, \mathbb{R}) \xrightarrow{\text{irred.}} \text{Sp}(2n, \mathbb{R}) \longrightarrow \text{Sp}(2n, \mathbb{C}) \) inside

 \(Q_1 \)-Anosov reps \(\mathcal{X}_{Q_1}(\pi_1(\Sigma), \text{Sp}(2n, \mathbb{C})). \)

- def. of \(\text{SL}(2, \mathbb{R}) \) embeddings; **Maximal reps**; **positive reps**; ...
Properties of (symplectic) Anosov representations

Theorem (Labourie, Guichard-Wienhard)

Given \(\rho : \pi_1(\Sigma) \longrightarrow \text{Sp}(2n, \mathbb{K}) \) \(Q_1 \)-Anosov, then

- \(\rho \) is discrete and faithful.
- \(\rho \) acts proximally on \(\mathbb{P}(\mathbb{K}^{2n}) \) (that is, \(\forall \gamma \in \pi_1(\Sigma), \exists x^+, x^- \in \mathbb{P}(\mathbb{K}^{2n}) \) s.t. \(\forall y \in \mathbb{P}(\mathbb{K}^{2n}) \) transverse to \(x^\gamma \rho(\gamma^{\pm n})y \longrightarrow x^\gamma \)).
- the orbit map \(\pi_1(\Sigma) \longrightarrow \text{Sp}(2n, \mathbb{K})/K \) is a quasi-isometric embedding wrt the word distance and the Riemannian distance, resp.

In addition, \(\mathcal{X}_{Q_1}(\pi_1(\Sigma), \text{Sp}(2n, \mathbb{K})) \) is open and \(\text{Mod}(\Sigma) \) acts prop. disc. on \(\mathcal{X}_{Q_1}(\pi_1(\Sigma), \text{Sp}(2n, \mathbb{K})) \).
Domain of discontinuity

Given ρ Q1–Anosov, we have $\xi_1^\rho: \partial_\infty(\pi_1(\Sigma)) \rightarrow \mathbb{CP}^{2n-1}$.

$\forall \ell \in \mathbb{CP}^{2n-1}$ let $K_\ell = \{W \in \text{Lag}(\mathbb{C}^2^n) | \ell \subset W\} \subset \text{Lag}(\mathbb{C}^{2n})$.

Define

$$K_{\xi_1^\rho} = \bigcup_{t \in \partial_\infty(\pi_1(\Sigma))} K_{\xi_1^\rho}(t) \quad \text{and} \quad \Omega_{\xi_1^\rho} = \text{Lag}(\mathbb{C}^{2n}) \setminus K_{\xi_1^\rho}$$

Theorem (Guichard–Wienhard)

$\Omega_{\xi_1^\rho}$ is a domain of discontinuity for the action of ρ on $\text{Lag}(\mathbb{C}^{2n})$ (that is, $\Omega_{\xi_1^\rho}$ is open and ρ acts on it freely, properly discontinuously and cocompactly).

Question

What is the topology of $\Omega_{\xi_1^\rho}/\rho$?
Main theorem

Conjecture (Dumas-Sanders)

Given $\rho: \pi_1(\Sigma) \rightarrow G$ B–quasi-Hitchin, then Ω_{ξ_ρ}/ρ is a fiber bundle over a surface with fiber a compact Poincaré duality space.

Dumas - Sanders prove the conjecture for $G = \text{SL}(3, \mathbb{C})$.

Theorem (Alessandrini - M. - Wienhard)

Given $\rho: \pi_1(\Sigma) \rightarrow \text{Sp}(4, \mathbb{C})$ Q_1–quasi-Hitchin, then $\Omega_{\xi_1\rho}/\rho$ is a fiber bundle over a surface with fiber F and structure group $\text{SO}(2)$ and Euler class $2g - 2$. In addition, the fiber F is homeomorphic to a quotient of $(\mathbb{S}^2 \times \mathbb{S}^2)/A_4$.

The cont. projection $\Omega_{\xi_1\rho} \rightarrow \mathbb{H}^2$ (which descends to $\Omega_{\xi_1\rho}/\rho \rightarrow \Sigma$) comes from the study of the space $\text{Lag}(\mathbb{C}^4)$ and its $\text{SL}(2, \mathbb{C})$–orbits.
SL(2, C)–orbits

First, we study the action of \(SL(2, \mathbb{C}) \) on \(\text{Lag} (\mathbb{C}^4) \).

Recall that \(\mathbb{C}^4 = \mathbb{C}^{(3)}[X, Y] \) and \(SL(2, \mathbb{C}) \) acts on \(\mathbb{C}^4 \) by acting on the roots of the polynomials.

Consider the Veronese embeddings:

- \(\xi^1 : \mathbb{R}P^1 \longrightarrow \mathbb{C}P^3 \)

 \[[a : b] \mapsto (bX - aY)^3 \]

 which can be extended to

- \(\xi^1_\mathbb{C} : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^3 \);

- \(\xi^2 : \mathbb{R}P^1 \longrightarrow \text{Lag} (\mathbb{C}^4) \)

 \[[a : b] \mapsto \langle (bX - aY)^3, (bX - aY)^2 X \rangle. \]

 \(\xi^2_\mathbb{C} : \mathbb{C}P^1 \longrightarrow \text{Lag}(\mathbb{C}^4). \)

Recall that \(\forall \ell \in \mathbb{C}P^3, K_\ell = \{ W \in \text{Lag}(\mathbb{C}^4) | \ell \subset W \} \subset \text{Lag}(\mathbb{C}^4) \).

Question

*What are the SL(2, C)–orbits in \(\text{Lag}(\mathbb{C}^4) \)?
SL(2, ℂ)–orbits of Lag(ℂ⁴)

Proposition

There are 3 SL(2, ℂ)–orbits in Lag(ℂ⁴):

- Lag(ℂ⁴) \ K_{ξ₁^C} \cong ℳ = \{ideal regular hyp. tetrahedra\} (open orbit).
- K_{ξ₁^C} \setminus ξ₂^C(ℂP¹);
- ξ₂^C(ℂP¹) (closed orbit).

Recall that an ideal hyperbolic tetrahedra is regular ⇐⇒ it has max volume ⇐⇒ the cross-ratio of its vertices is \(\frac{1-i\sqrt{3}}{2}\).

Note that \(K_{ξ₁^C}\) corresponds to “degenerate” ideal regular tetrahedra.
Sketch of the proof

\[K_{\xi_1} \cong \mathbb{C}P^1 \times \mathbb{C}P^1. \]

\[K_{\xi_1} = \bigcup_{t \in \mathbb{C}P^1} K_{\xi_1}(t) = \{ W \in \text{Lag}(\mathbb{C}^4) \mid \exists p = (X - z_0 Y)^3 \in W \} = \{ W \in \text{Lag}(\mathbb{C}^4) \mid \forall p \in W, p(X, Y) = (X - z_0 Y)q(X, Y) \}. \]

So \(F : \mathbb{C}P^1 \times \mathbb{C}P^1 \xrightarrow{\cong} K_{\xi_1} \) by \(F([a : b], [c : d]) = \)

\[\begin{cases}
< (bX - aY)^3, (bX - aY)^2X > = \xi_2^2([a : b]) & \text{if } [a : b] = [c : d] \\
< (bX - aY)^3, (dX - cY)^2(bX - aY) > & \text{if } [a : b] \neq [c : d]
\end{cases} \]

Remark

\[K_{\xi_1} \cong \mathbb{R}P^1 \times \mathbb{C}P^1. \]
Sketch of the proof (summary)

\[\text{Lag}(\mathbb{C}^4) \setminus K_{\xi_C} \cong \mathcal{Z}. \]

- \(\forall W \in \text{Lag}(\mathbb{C}^4) \setminus K_{\xi_C}, \exists p \in W \) with a double root. Up to \(\text{SL}(2, \mathbb{C}) \), we can suppose \(p = X^2 Y \).
- We study all the Lagrangians containing \(p = X^2 Y \).
- \(\forall W \in \text{Lag}(\mathbb{C}^4) \setminus K_{\xi_C} \), \(\exists 4 p \in W \) with double roots and these 4 roots form a regular ideal hyperbolic tetrahedra.
Sketch of the proof (details)

\[\text{Lag}(\mathbb{C}^4) \setminus K_{\xi_1} \cong \mathcal{I}. \]

- \(\forall W \in \text{Lag}(\mathbb{C}^4), \exists p \in W \text{ s.t.} \)
 \[p(X, Y) = (X - z_0 Y)^2(X - z_1 Y), \text{ with } z_i \in \mathbb{CP}^1. \]
 - Let \(z_0 = 0 \) and \(z_1 = \infty \), so \(p = X^2 Y. \)
 \[L_{X^2 Y} = \{ W \in \text{Lag}(\mathbb{C}^4) \mid X^2 Y \in W \} \]
 \[= \{ W = \langle X^2 Y, X^3 + \frac{b}{a} Y^3 \rangle \mid \frac{b}{a} \in \mathbb{CP}^1 \}. \]

By using the action of \(\text{SL}(2, \mathbb{C}) \), we can assume \(\frac{b}{a} = 1 \) and study \(W = \langle X^2 Y, X^3 + Y^3 \rangle. \) So

\[K_{\xi_1} \mathbb{C} = \text{SL}(2, \mathbb{C}) \cdot \langle X^2 Y, X^3 + Y^3 \rangle. \]
Sketch of the proof (details)

\[
\text{Lag}(\mathbb{C}^4) \setminus K_{\xi_1} \cong \mathbb{C}.
\]

- In \(W = \langle X^2 Y, X^3 + Y^3 \rangle \) \(\exists 4 \) ‘special’ polynomials with double roots. Their associate double and single roots are:

 (i) \(z_0 = 0 \) and \(w_0 = \infty \);

 (ii) \(z_1 = \sqrt[3]{2} \) and \(w_1 = -\frac{1}{3^{\frac{3}{4}}} \);

 (iii) \(z_2 = \frac{-1-i\sqrt{3}}{3^{\frac{3}{4}}} \) and \(w_2 = \frac{1+i\sqrt{3}}{2^{\frac{3}{4}}} \);

 (iv) \(z_3 = \frac{-1+i\sqrt{3}}{3^{\frac{3}{4}}} \) and \(w_3 = \frac{1-i\sqrt{3}}{2^{\frac{3}{4}}} \).

(Proof: use the notion of discriminant.)

- The cross ratio is \([z_0 : z_1 : z_2 : z_3] = [w_0 : w_1 : w_2 : w_3] = \frac{1-i\sqrt{3}}{2} \).
Main theorem

By sending a tetrahedra into its barycenter (or its degenerations), we define the cont. projections

\[\text{Lag}(\mathbb{C}^4) \rightarrow \mathbb{H}^3 \cup \mathbb{CP}^1 \quad \text{and} \quad \Omega_{\xi_1} \rightarrow \mathbb{H}^2, \]

where

\[\Omega_{\xi_1} = \mathcal{T} \cup (\mathbb{CP}^1 \setminus \mathbb{RP}^1) \times
\mathbb{RP}^1 \rightarrow \mathbb{H}^3 \cup (\mathbb{CP}^1 \setminus \mathbb{RP}^1) \rightarrow \mathbb{H}^2 \]

Theorem

Given \(\rho : \pi_1(\Sigma) \rightarrow \text{Sp}(4, \mathbb{C}) \) \(Q_1 \)-Anosov, then \(\Omega_{\xi_1} / \rho \) is a fiber bundle over a surface with fiber \(F \) and structure group \(\text{SO}(2) \) and Euler class \(2g - 2 \).

Question

What can we say about the fiber \(F \) ?
What can we say about F?

Theorem

The fiber F is homeomorphic to a quotient of $(S^2 \times S^2)/A_4$.

Let’s describe first $S^2 \times S^2$ via mapping cylinders:

- Let $M_p = T^1(S^2) \times [0, 1]/(T^1(S^2) \times \{0\} \sim S^2)$ via the projection $p: T^1(S^2) \longrightarrow S^2$.
- Then $M_p \sqcup_{id} M_p/ \sim \cong S^2 \times S^2$.

$T^1(S^2)/A_4 \cong T^{1,orb}(S^2(2, 3, 3))$ (reg. tetrahedra with fixed barycenter).

If we do the same construction replacing $T^1(S^2)$ with $T^{1,orb}(S^2(2, 3, 3))$ and p with a map $\hat{p}: T^{1,orb}(S^2(2, 3, 3)) \longrightarrow S^2(2, 3, 3)$ we obtain $X = (S^2 \times S^2)/A_4$. The fiber F is a quotient of X and is homotopically equivalent to it.
Theorem (Wolf J.)

There are 6 $\text{Sp}(4, \mathbb{R})$–orbits in $\text{Lag}(\mathbb{C}^4)$:

$$\mathcal{R}_i = \{ \mathcal{W} \in \text{Lag}(\mathbb{C}^4) \mid \dim(\mathcal{W} \cap \overline{\mathcal{W}}) = i \}.$$

Then

- $\mathcal{R}_0 = \mathcal{H}_{2,0} \cup \mathcal{H}_{1,1} \cup \mathcal{H}_{0,2}$ where $\mathcal{H}_{i,j} \cong X_{i,j} = \text{Sp}(4, \mathbb{R})/U(i,j)$ (open).
- \mathcal{R}_1 fibers over $\mathbb{P}(\mathbb{R}^4)$ with fiber isomorphic to $X_{0,1} \cup X_{1,0}$.
- $\mathcal{R}_2 \cong \text{Lag}(\mathbb{R}^4)$ (closed).
Sketch of the proof

Proof.

1. **R_0:**
 - $\omega_\mathbb{C}$ defines a non-degenerate $Sp(4, \mathbb{R})$–invariant Hermitian form h:
 \[h(v, w) := i\omega_\mathbb{C}(\bar{v}, w); \]
 - $R_0 = \mathcal{H}_{2,0} \cup \mathcal{H}_{1,1} \cup \mathcal{H}_{0,2}$ w/ \[\mathcal{H}_{p,q} = \{ W \in R_0 \mid h\big|_{W \times W} \text{ has signature } (p, q) \}. \]

2. **R_1:**
 - $\forall W \in R_1$, then $Z = W \cap \overline{W}$ is the complexification of $Z' \in \mathbb{P}(\mathbb{R}^4)$ and this gives $p : R_1 \rightarrow \mathbb{P}(\mathbb{R}^4)$;
 - Let $M = Z^{\perp_{\omega_\mathbb{C}}}/Z$ is a 2–dim. sympl. space. Any $W \in p^{-1}(Z')$ is uniquely determined by $Y \in \text{Lag}(M)$ s.t. $Y \cap \overline{Y} = \{0\}$.

3. **R_2:** any $W \in R_2$ is the complexification of $W' \in \text{Lag}(\mathbb{R}^4)$.
Ralationship with Ω_{ξ^1}

Question

What is the relationship between F and the $\text{Sp}(4, \mathbb{R})$–orbits?
Open questions

- What can we say about the d.o.d. $\Omega \subset \mathcal{F}(\mathbb{C}^4)$ for a Fuchsian representation $\rho: \pi_1(\Sigma) \to \text{SL}(2, \mathbb{R}) \to \text{Sp}(4, \mathbb{C})$?

- What is the connection with Dumas-Sanders’ work? What can we say for $G = \text{Sp}(2n, \mathbb{C})$ or other cases? (We are working on this with D. Dumas.)

- What can we say about the quotient of the symmetric space?

- What can we say about limit of these representations? Can you combine punctured Fuchsian groups in order to understand ‘geometrically finite’ groups? Are there ‘geometrically infinite’ groups?

- Can we use other methods to find a fibration? (We plan to work on this with Q. Li using Higgs bundles techniques.)
End
Cartan decomposition and contraction properties

Let $\mathfrak{a} = \{ \text{diag}(\lambda_1, \ldots, \lambda_n, -\lambda_n, \ldots, -\lambda_1) \mid \lambda_i \in \mathbb{R} \} \subset \mathfrak{sp}$. Decompose $\text{Sp}(2n, \mathbb{K}) = K \exp(\mathfrak{a}) K$. [Problem: not unique!]

Given $\mathfrak{a}^+ = \{ \text{diag}(\lambda_1, \ldots, \lambda_n, -\lambda_n, \ldots, -\lambda_1) \mid \lambda_1 \geq \lambda_2 \ldots \lambda_n \geq 0 \}$, then $\text{Sp}(2n, \mathbb{K}) = K \exp(\mathfrak{a}^+) K$ is unique:

$\forall g \in \text{Sp}(2n, \mathbb{K}), \exists! \; a_g \in \mathfrak{a}^+ \text{ s.t. } k_1 \exp(a_g) k_2$, where

Definition

$\mu : \text{Sp}(2n, \mathbb{K}) \longrightarrow \mathfrak{a}^+$ defined by $g \mapsto a_g$ is called the *Cartan projection* of $\text{Sp}(2n, \mathbb{K})$.

Let $\alpha_i := \epsilon_i - \epsilon_{i+1} \in \mathfrak{a}^*$ and $\alpha_n = 2\epsilon_n \in \mathfrak{a}^*$, where $\epsilon_i (\text{diag}(\lambda_1, \ldots, \lambda_n, -\lambda_n, \ldots, -\lambda_1)) = \lambda_i$.

Then contraction properties is: $\forall \gamma_n \in \pi_1(\Sigma), \lim_{n \to \infty} \alpha_i (\mu(\rho(\gamma_n))) = \infty$.
Sketch of the proof (cont.)

\[\text{Lag}(\mathbb{C}^4) \setminus K_{\xi_1} \cong \mathbb{S}. \]

- \(\forall W \in \text{Lag}(\mathbb{C}^4) \setminus K_{\xi_1}, \exists p \in W \) with a double root. Up to \(\text{SL}(2, \mathbb{C}) \), we can suppose \(p = X^2Y \).
- We study all the Lagrangians containing \(p = X^2Y \).
- \(\forall W \in \text{Lag}(\mathbb{C}^4) \setminus K_{\xi_1} \exists 4 \ p \in W \) with double roots and these 4 roots form a regular ideal hyperbolic tetrahedra.
Sp(2n, ℝ)–orbits

Let $\text{Is}_i(\mathbb{R}^{2n}) = \{i - \text{dimensional isotropic subspaces}\}$.

Theorem (Wolf J.)

$Lag(\mathbb{C}^{2n}) = \bigcup_{i=0}^{n} \mathcal{R}_i$, where

$$\mathcal{R}_i = \{W \in Lag(\mathbb{C}^{2n}) \mid \dim(W \cap \overline{W}) = i\}.$$

Then

- $\mathcal{R}_0 = \bigcup_{p=0}^{n} \mathcal{H}_{p,n-p}$, where $\mathcal{H}_{p,n-p} \cong X_{p,n-p}$ (open).
- \mathcal{R}_i fibers over $\text{Is}_i(\mathbb{R}^{2n})$ with fiber isomorphic to $\bigcup_{p=0}^{n-i} X_{p,n-i-p}$.
- $\mathcal{R}_n \cong \text{Lag}(\mathbb{R}^{2n})$ (closed).
Sketch of the proof

Proof.

1. \mathcal{R}_0:
 - ω_C defines a non-degenerate $Sp(2n, \mathbb{R})$–invariant Hermitian form h:
 \[
 h(v, w) := i\omega_C(\overline{v}, w) \quad \forall v, w \in \mathbb{C}^{2n};
 \]
 - $\mathcal{R}_0 = \bigcup_{p=0}^{n} \mathcal{H}_{p,n-p}$, where
 \[
 \mathcal{H}_{p,q} = \{ W \in \mathcal{R}_0 \mid h|_{W \times W} \text{ has signature } (p, q) \}.
 \]

2. \mathcal{R}_i:
 - $\forall W \in \mathcal{R}_i$, then $Z = W \cap \overline{W}$ is the complexification of $Z' \in Is_i(\mathbb{R}^4)$ and this gives $p: \mathcal{R}_i \longrightarrow Is_i(\mathbb{R}^4)$;
 - Let $M = Z^\perp \omega_C / Z$. Any $W \in p^{-1}(Z')$ is uniquely determined by $Y \in \text{Lag}(M)$ s.t. $Y \cap \overline{Y} = \{0\}$.

3. \mathcal{R}_n: any $W \in \mathcal{R}_n$ is the complexification of $W' \in \text{Lag}(\mathbb{R}^{2n})$.