TSearch: Target-Oriented Low-Delay Node Searching in DTNs with Social Network Properties

Presenter: Fangming Liu

Authors: Li Yan, Haiying Shen and Kang Chen
Dept. of Electrical and Computer Engineering
Clemson University, SC, USA
Outline

- Introduction
- Related work
- Rationale of TSearch design
- System design of TSearch
- Evaluation
- Conclusion
Introduction

- Nodes form delay tolerant networks in distributed manner
 - Without infrastructure for communication

- Nodes move autonomously in the network
 - Example 1: malfunctioning sensors on animals
 - Example 2: malicious nodes in the network
 - Example 3: mobile devices held by people on campus
Introduction (cont.)

• Node searching is **important**
 – Find a node carrying a malfunctioning device
 – Locate malicious nodes timely
 – Enable the search of device holders

• Node searching is also **non-trivial**
 – No central controller to guide node movement
 – No infrastructure to collect node location information
 – Information transmission follows the “delay tolerant” manner
Related Work

• Infrastructure-based methods [SIGCOMM’07, ICNP’13]
 – Rely on infrastructure to collect node mobility information
 – Drawbacks:
 • Not applicable to the DTN scenario

• DTN routing methods [SIGCOMM’07, INFOCOM’10]
 – Can achieve node searching
 – Drawbacks:
 • Low efficiency due to hop-by-hop routing

• DTN node searching methods [INFOCOM’14]
 – Summarize node mobility information
 – Let nodes store & distribute mobility information in the network for node searching
Related Work (cont.)

- DTN node searching methods [INFOCOM’14]
 - Drawbacks:
 - Tracing target along its movement is not sufficiently efficient

- Proposed method
 - Locators move to the most recent location of target
 - Use nodes’ preference in specific locations for search
 - Use nodes’ friends for search
Rationale of TSearch Design

• Real traces for analysis
 – Dartmouth trace (DART) [1]:
 • A 119-day record for wireless devices carried by students on Dartmouth College campus
 • Initial period: 30 days
 • 70 locators were generated periodically (1 day) for 90 times
 – DieselNet trace (DNET) [2]:
 • A 20-day record for WiFi nodes attached to the buses in the downtown area of UMass college town
 • Initial period: 2.5 days
 • 70 locators were generated periodically (4 hours) for 90 times

Rationale of TSearch Design

• Drawback of DSearch
 – Long distances to the home-area and movement trail of the target node
 – Solution: let locator move directly to the most recent locations of the targets.

• Effectiveness of preferred locations on searching
 – Nodes have preference on multiple locations
Rationale of TSearch Design (cont.)

• **Friends**
 – Each node has certain frequently meeting nodes
 – ERs of the target’s friends can be used as complementary method for node searching.

• **Search range constraint**
 – Nodes’ possible locations can be determined based on the normal node velocity and the time and location in the nodes’ latest ER
Information dissemination

- Anchors: nodes that stay in certain sub-area for a long time
- Anchors store mobility information of nodes for easy access.
- Ambassadors: nodes that frequently transit between two sub-areas
- Ambassadors help maintain consistency of mobility information among anchors
Design: Problem Definition

- A DTN with n nodes
 - N_i, $i = 1, 2, 3, \ldots, n$

- Whole DTN is split into sub-areas
 - Each sub-area contains one landmark, e.g., a popular place
 - The area between two landmarks is evenly split
 - No overlap among sub-areas

- Node searching
 - Enabling the locator to find the sub-area where the target node resides in
Design: Info. for Searching

- **Encounter record (ER)**
 - Generated when nodes encounter with each other
 - Shows a historical location of the node
 \[< N_i, N_j, L_{ij}, T_{ij} > \]
 - \(N_i \) and \(N_j \) represent the two encountering nodes
 - \(L_{ij} \) and \(T_{ij} \) represent the current sub-area and the current time, respectively

- **Purpose of ER**
 - Providing the information on recent locations of the target
Design: Info. for Searching

• Friends and preferred locations
 – **Friends:** nodes that take up at least a high percentage (60%) of all contacts with the node
 – **Preferred locations:** The top ranked sub-areas that constitute 60% of visiting frequency of the target node.

• Purpose of friends and preferred locations
 – Providing the information on target’s preference in meeting nodes and visiting sub-areas

<table>
<thead>
<tr>
<th>Node</th>
<th>Friends</th>
<th>Meeting prob.</th>
<th>Preferred locations</th>
<th>Visiting prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>N_3</td>
<td>0.9</td>
<td>A_3</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>N_4</td>
<td>0.8</td>
<td>A_4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>N_6</td>
<td>0.7</td>
<td>A_5</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Design: Distribute Mobility Info.

• Anchor
 – Stable node with high storage and computing capacity
 – Collect ERs, friends and preferred locations of nodes
 – Once locator moves into a sub-area, it can quickly access the information of nodes that once visited the sub-area from the anchors of the sub-area

• Ambassador
 – Nodes frequently transiting between two sub-areas
 – Maintain the consistency of information among anchors
Design: Distribute Mobility Info.

• Role determination
 – Anchor: staying probability of a node is larger than a threshold
 – Ambassador: frequency of transiting between two sub-areas is higher than a threshold

[Diagram showing anchor and ambassador nodes with movement and data exchange.]
Design: Node Searching

- **Node searching based on ERs**
 - Locator moves to the location in the ER
 - Changes destination if newer ER is found

- **Node searching based on friends’ ERs**
 - Locator moves to the location in the ER of the friend that has the highest meeting probability with the target

- **Node searching based on target’s preferred locations**
 - Locator moves to the nearest preferred location
 - Locator relies on M nodes (as agents) to search the next top M preferred locations
 - Agents have common preferred locations with the target
 - If an agent finds the target, it uses a routing algorithm to notify the locator
Design: Node Searching

Based on ERs

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2:00 PM 3/4/2014</td>
<td>2:30 PM 3/4/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 AM 3/4/2014</td>
<td>1:00 PM 3/4/2014</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locator</td>
</tr>
</tbody>
</table>

Based on friends’ ERs

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2:00 PM 3/4/2014</td>
<td>2:30 PM 3/4/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 AM 3/4/2014</td>
<td>1:00 PM 3/4/2014</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locator</td>
</tr>
</tbody>
</table>

Based on preferred locations

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Search route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locator</td>
<td>Agent</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

17
Performance Evaluation

• Simulator
 – Event driven simulator

• Node Mobility Traces
 – Dartmouth trace (DART): records of mobile devices on campus [1]
 – DieselNet trace (DNET): records of buses in a college town [2]

• Comparison Methods
 – TS*: TSearch with ER exchange
 – TS: TSearch without ER exchange
 – DS: DSearch distributed node searching [INFOCOM 14’]
 – Routing: a routing based method [SIGMOBILE 03’]
 – ER: TSearch using ER only

Metrics

- **Success rate**
 - The percentage of locators that can successfully locate the target nodes within the TTL

- **Average delay**
 - The average time used by successful locators

- **Average transmission overhead**
 - The average number of all packets transmitted among nodes

- **Average node memory usage**
 - The average number of memory units used by each node
Experiment with Different Search Rates (DART)

Success rate: $\text{TS}^* > \text{TS} > \text{DS} > \text{ER} >> \text{Routing}$

Ave. delay: $\text{TS}^* < \text{TS} < \text{DS} < \text{ER} < \text{Routing}$

Ave. trans. overhead: $\text{TS} < \text{Routing} < \text{ER} < \text{DS} < \text{TS}^*$

Ave. memo. usage: $\text{ER} < \text{Routing} < \text{TS} < \text{DS} < \text{TS}^*$
Experiment with Different TTLs (DNET)

Success rate: $\text{TS}^* > \text{TS} > \text{DS} > \text{ER} > \text{Routing}$

Ave. delay: $\text{TS}^* < \text{TS} < \text{DS} < \text{ER} < \text{Routing}$

Ave. trans. overhead: $\text{TS} < \text{Routing} < \text{ER} < \text{DS} < \text{TS}^*$

Ave. memo. usage: $\text{ER} < \text{Routing} < \text{TS} < \text{DS} < \text{TS}^*$
Contribution of Different Stages in TSearch

- Most of the successful searches are achieved by following the target’s ERs.

- The ERs of the target’s friends have the second highest contribution on the success rate.

- The target’s preferred location information has the third highest contribution on success rate.
Conclusions

• Our real trace analysis confirms the drawbacks of previous node searching methods in DTNs

• We proposed TSearch, it
 – enables a locator to always move to the target’s latest appearance place known by itself
 – enables a locator to find the target through its friends
 – enables a locator to ask a limited number of nodes that share common preferred locations with the target to assist node searching

• In our future work, we plan to further exploit nodes’ social network properties to reduce node searching delay and overhead.
Thank you!

Questions & Comments?

Li Yan, PhD Candidate
lyan@clemson.edu
Pervasive Communication Laboratory
Clemson University