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Sorting with Limited Memory
❖ Sorting is a fundamental operation in 

data processing!

❖ Data maybe so large that it does not fit 
in memory and must be sequentially 
accessed:!
★ Streamed data from network!

★ Data stored on magnetic storage!

❖ Not to rearrange data but to 
approximate its ordering as closely as 
possible!

❖ Study of relationship between quality of 
sorting and available memory

Magnetic Storage

Network

Data Stream



Learning Preference Rankings
❖ Same model for obtaining a user’s ranking of objects presented one by 

one!

❖ User’s ranking is useful for recommendation and collaborative filtering!

❖ User can remember only a small number of movies she watched

Ranking of movies
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Problem Statement

❖ If i appears before j in X, then si<sj!

❖ To store stream elements, m cells are available; no limitation on other 
types of memory!

❖ Algorithm can compare any two elements residing in memory!

❖ Deterministic algorithms, X is a random permutation!

❖ Performance measure: Mutual information and distortion between X and Y

s1 s2 · · · sn
| {z }

· · ·
m memory cells

Algorithm

Y: !
approximation of X

| {z }Stream s

X: permutation defining !
an ordering on s
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Universal Bounds: Mutual Information

Proof outline:!

❖ Algorithms may only compare elements in memory!

❖ Mutual information between X and Y cannot be larger than entropy of 
solutions of comparisons 

Theorem: For any algorithm, if m=nb, we have!

I(X;Y)/H(X) ≤ b(1+o(1)), 

where I is mutual information and H is entropy.



Kendall Distortion
❖ To measure agreement between input and output we use Kendall tau and 

weighted Kendall distances!

❖ Kendall tau distance:!

★ Counts the number of pairwise mistakes!

★ # transpositions of adjacent elements needed to take one permutation to another!

★ Example: d𝜏(312,123)=2 since 312→132→123 

❖ Weighted Kendall distance:!

★ Weight wi for transposing ith and (i+1)st elements!

★ Can be used to penalize mistakes in higher positions more!

★ Example: Let w1 =2 and w2 =1. dw(312,123)=3 since 312→132→123



Universal Bounds: Kendall Distortion

Proof outline:!

❖ Bound number of outputs of alg. by counting solutions to comparisons!

❖ Set of outputs can be viewed as a covering code!

❖ Use rate-distortion on permutations [Wang et al. 2013, Farnoud et al. 2014]

Theorem: For any algorithm with memory µn and 
average Kendall distortion 𝛿n, !

µ ≥ 1/(e2𝛿) (1+O(Log n /n)+O(1/𝛿)).

See paper for non-asymptotic result in 𝛿.



Algorithm
❖ A simple algorithm:!

★ Store the first m-1 elements of the stream as pivots!

★ Sort the set {1,2,…,m-1} based on the ordering s1, s2,…, sm-1!

★ Compare each new element with pivots!

★ Put the index of new element in its proper position in Y

· · · sn
m memory cells
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Algorithm: Performance

Theorem: In terms of mutual information, the 
algorithm is asymptotically optimal.

Theorem: Suppose the algorithm has memory µn and 
average Kendall distortion 𝛿n. We have!

µ ≤ 1/(2𝛿) (1+O(1/n)+O(1/𝛿)).

To provide the same distortion as an optimal algorithm, 
we need e2/2≅3.7 times as much memory.



Distortion with Weighted Kendall
❖ What should be the ranks of pivots if errors in higher 

positions are to be penalized more?!

❖ Use weighted Kendall to model non-uniform importance 

❖ Linearly decreasing weight function: wi = 1+ c (n-i-1):
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Remembering last m elements
❖ Finding the best ranking is closely related to the #P-complete 

problem of counting the number of linear extensions of a poset!

❖ Simple algorithm: rank each group of m elements and 
interleave!
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❖ Better algorithm needed for distortion

Theorem: In terms of mutual information, the 
algorithm is asymptotically optimal. That is, with 
m=anb, a fraction b of information in X is recovered.


