Information Theory and Applications, Feb. 2014 # Sorting Big Data with Small Memory Farzad Farnoud Eitan Yakoobi Jehoshua Bruck # Sorting with Limited Memory - * Sorting is a fundamental operation in data processing - Data maybe so large that it does not fit in memory and must be sequentially accessed: - * Streamed data from network - * Data stored on magnetic storage - Not to rearrange data but to approximate its ordering as closely as possible - * Study of relationship between quality of sorting and available memory Network Data Stream Magnetic Storage # Learning Preference Rankings - * Same model for obtaining a user's ranking of objects presented one by one - User's ranking is useful for recommendation and collaborative filtering - User can remember only a small number of movies she watched # Learning Preference Rankings - * Same model for obtaining a user's ranking of objects presented one by one - User's ranking is useful for recommendation and collaborative filtering - User can remember only a small number of movies she watched ## Problem Statement - * If *i* appears before *j* in *X*, then $s_i < s_j$ - * To store stream elements, *m* cells are available; no limitation on other types of memory - * Algorithm can compare any two elements residing in memory - Deterministic algorithms, X is a random permutation - * Performance measure: *Mutual information* and *distortion* between *X* and *Y* ## Related Work - * J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical Computer Science, 12(3):315–323, 1980. - * G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quantiles in one pass and with limited memory. ACM SIGMOD 1998 - * Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In Proc. 25th ACM Symposium on Principles of Database Systems, pp. 273–279, 2006. - * A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight lower bounds for selection in randomly ordered streams. SODA 2008 #### Universal Bounds: Mutual Information **Theorem**: For any algorithm, if $m=n^b$, we have $$I(X;Y)/H(X) \leq b(1+o(1)),$$ where *I* is mutual information and *H* is entropy. #### **Proof outline:** - Algorithms may only compare elements in memory - * Mutual information between *X* and *Y* cannot be larger than entropy of solutions of comparisons ## Kendall Distortion - * To measure agreement between input and output we use Kendall tau and weighted Kendall distances - * Kendall tau distance: - * Counts the number of pairwise mistakes - * # transpositions of adjacent elements needed to take one permutation to another - * Example: $d_{\tau}(312,123)=2$ since $312 \rightarrow 132 \rightarrow 123$ - * Weighted Kendall distance: - * Weight w_i for transposing ith and (i+1)st elements - * Can be used to penalize mistakes in higher positions more - * Example: Let $w_1 = 2$ and $w_2 = 1$. $d_w(312,123) = 3$ since $312 \rightarrow 132 \rightarrow 123$ #### Universal Bounds: Kendall Distortion **Theorem**: For any algorithm with memory μn and average Kendall distortion δn , $$\mu \ge 1/(e^2\delta) (1+O(\log n/n)+O(1/\delta)).$$ #### **Proof outline:** - * Bound number of outputs of alg. by counting solutions to comparisons - Set of outputs can be viewed as a covering code - * Use rate-distortion on permutations [Wang et al. 2013, Farnoud et al. 2014] # Algorithm - * A simple algorithm: - * Store the first *m*-1 elements of the stream as *pivots* - * Sort the set $\{1,2,...,m-1\}$ based on the ordering $s_1,s_2,...,s_{m-1}$ - * Compare each new element with pivots - * Put the index of new element in its proper position in *Y* # Algorithm: Performance Theorem: In terms of mutual information, the algorithm is asymptotically optimal. **Theorem**: Suppose the algorithm has memory μn and average Kendall distortion δn . We have $$\mu \le 1/(2\delta) (1+O(1/n)+O(1/\delta)).$$ To provide the same distortion as an optimal algorithm, we need $e^2/2 \approx 3.7$ times as much memory. # Distortion with Weighted Kendall - * What should be the ranks of pivots if errors in higher positions are to be penalized more? - Use weighted Kendall to model non-uniform importance - * Linearly decreasing weight function: $w_i = 1 + c (n-i-1)$: # Remembering last m elements - * Finding the best ranking is closely related to the #P-complete problem of counting the number of linear extensions of a poset - * Simple algorithm: rank each group of *m* elements and interleave **Theorem**: In terms of mutual information, the algorithm is asymptotically optimal. That is, with $m=an^b$, a fraction b of information in X is recovered. Better algorithm needed for distortion