Information Theory and Applications, Feb. 2014

# Sorting Big Data with Small Memory

Farzad Farnoud Eitan Yakoobi Jehoshua Bruck



# Sorting with Limited Memory

- \* Sorting is a fundamental operation in data processing
- Data maybe so large that it does not fit in memory and must be sequentially accessed:
  - \* Streamed data from network
  - \* Data stored on magnetic storage
- Not to rearrange data but to approximate its ordering as closely as possible
- \* Study of relationship between quality of sorting and available memory

Network



Data Stream



Magnetic Storage

# Learning Preference Rankings

- \* Same model for obtaining a user's ranking of objects presented one by one
- User's ranking is useful for recommendation and collaborative filtering
- User can remember only a small number of movies she watched













# Learning Preference Rankings

- \* Same model for obtaining a user's ranking of objects presented one by one
- User's ranking is useful for recommendation and collaborative filtering
- User can remember only a small number of movies she watched



## Problem Statement



- \* If *i* appears before *j* in *X*, then  $s_i < s_j$
- \* To store stream elements, *m* cells are available; no limitation on other types of memory
- \* Algorithm can compare any two elements residing in memory
- Deterministic algorithms, X is a random permutation
- \* Performance measure: *Mutual information* and *distortion* between *X* and *Y*

## Related Work

- \* J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical Computer Science, 12(3):315–323, 1980.
- \* G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quantiles in one pass and with limited memory. ACM SIGMOD 1998
- \* Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In Proc. 25th ACM Symposium on Principles of Database Systems, pp. 273–279, 2006.
- \* A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight lower bounds for selection in randomly ordered streams. SODA 2008

#### Universal Bounds: Mutual Information

**Theorem**: For any algorithm, if  $m=n^b$ , we have

$$I(X;Y)/H(X) \leq b(1+o(1)),$$

where *I* is mutual information and *H* is entropy.

#### **Proof outline:**

- Algorithms may only compare elements in memory
- \* Mutual information between *X* and *Y* cannot be larger than entropy of solutions of comparisons

## Kendall Distortion

- \* To measure agreement between input and output we use Kendall tau and weighted Kendall distances
- \* Kendall tau distance:
  - \* Counts the number of pairwise mistakes
  - \* # transpositions of adjacent elements needed to take one permutation to another
  - \* Example:  $d_{\tau}(312,123)=2$  since  $312 \rightarrow 132 \rightarrow 123$
- \* Weighted Kendall distance:
  - \* Weight  $w_i$  for transposing ith and (i+1)st elements
  - \* Can be used to penalize mistakes in higher positions more
  - \* Example: Let  $w_1 = 2$  and  $w_2 = 1$ .  $d_w(312,123) = 3$  since  $312 \rightarrow 132 \rightarrow 123$

#### Universal Bounds: Kendall Distortion

**Theorem**: For any algorithm with memory  $\mu n$  and average Kendall distortion  $\delta n$ ,

$$\mu \ge 1/(e^2\delta) (1+O(\log n/n)+O(1/\delta)).$$

#### **Proof outline:**

- \* Bound number of outputs of alg. by counting solutions to comparisons
- Set of outputs can be viewed as a covering code
- \* Use rate-distortion on permutations [Wang et al. 2013, Farnoud et al. 2014]

# Algorithm

- \* A simple algorithm:
  - \* Store the first *m*-1 elements of the stream as *pivots*
  - \* Sort the set  $\{1,2,...,m-1\}$  based on the ordering  $s_1,s_2,...,s_{m-1}$
  - \* Compare each new element with pivots
  - \* Put the index of new element in its proper position in *Y*



# Algorithm: Performance

Theorem: In terms of mutual information, the algorithm is asymptotically optimal.

**Theorem**: Suppose the algorithm has memory  $\mu n$  and average Kendall distortion  $\delta n$ . We have

$$\mu \le 1/(2\delta) (1+O(1/n)+O(1/\delta)).$$

To provide the same distortion as an optimal algorithm, we need  $e^2/2 \approx 3.7$  times as much memory.

# Distortion with Weighted Kendall

- \* What should be the ranks of pivots if errors in higher positions are to be penalized more?
- Use weighted Kendall to model non-uniform importance
- \* Linearly decreasing weight function:  $w_i = 1 + c (n-i-1)$ :



# Remembering last m elements

- \* Finding the best ranking is closely related to the #P-complete problem of counting the number of linear extensions of a poset
- \* Simple algorithm: rank each group of *m* elements and interleave

**Theorem**: In terms of mutual information, the algorithm is asymptotically optimal. That is, with  $m=an^b$ , a fraction b of information in X is recovered.

Better algorithm needed for distortion