#  TITLE  COAUTHORS  ARXIV  STATUS 
31  Multilinear operatorvalued
representation theorem 
K. Li, H. Martikainen, E. Vuorinen 
under completion 

30  Directional square functions and
a sharp Meyer Lemma 
I. Parissis  submitted, preprint
available 

29  A metric approach to sparse domination  J. M. CondeAlonso, I. Parissis  under completion 

28  Maximal directional operators
along algebraic varieties 
I. Parissis  1807.08255 
submitted 
27  Endpoint sparse
bound for WalshFourier multipliers of
Marcinkiewicz type 
A. Culiuc, M. Lacey, Y. Ou 
1805.06060  submitted to Rev. Mat. Iberoam. 
26  On the maximal directional
Hilbert transform in three dimensions 
I. Parissis  1712.02673 
to appear, Int. Math. Res.
Notices (IMRN) 
25  A sparse estimate for
multisublinear forms involving vectorvalued maximal
functions 
A. Culiuc, Y. Ou  1709.09647  Bruno Pini Math. Analysis
Seminar, p. 168184, May 2018

24 
A sharp
estimate for the Hilbert transform along higher
order lacunary directions 
I. Parissis 
1704.02918 
to appear, Israel J. Math. 
23 
Square
functions for biLipschitz maps and directional
operators 
S. Guo, C.Thiele and P.
ZorinKranich 
1706.07111 
to appear, J. Funct. Analysis 
22 
Sparse
bounds for maximal rough singular integrals via
the Fourier transform 
T. Hytönen, K. Li 
1706.09064 
submitted to Ann. Inst. Fourier
(Grenoble) 
21 
The
NavierStokesVoigt Equations with Memory in 3D
lacking instantaneous kinematic viscosity 
A. Giorgini, V. Pata and R. Temam 
1701.07845 
J. Nonlinear Sci. 28 (2018), no. 2, 653686. 
20 
A
sparse domination principle for rough singular
integrals 
J. M. CondeAlonso, A. Culiuc, Y. Ou 
1612.09201 
Analysis & PDE 10 (2017),
no. 5, 12551284 
19 
Positive sparse domination of
variational Carleson operators 
Y. Q. Do, G. N. Uraltsev 
1612.03028 
to appear, Ann. Sci. Scuola
Norm. Sup. (Scienze) 
18 
Uniform sparse domination of
singular integrals via dyadic shifts 
A. Culiuc, Y. Ou  1610.01958 
Math. Res. Lett. 25 (2018).
no. 1, 2142 
17 
Domination
of multilinear singular integrals by positive
sparse forms 
A. Culiuc, Y. Ou  1603.05317 
J. London Math. Soc. (2018) online first here 
16 
A modulation invariant Carleson
embedding theorem outside local L^2 
Y. Ou  1510.06433 
J. d'Analyse Math. 135 (2018) no. 2, 675711 
15 
Banachvalued multilinear
singular integrals 
Y. Ou 
1506.05827 
to appear, Indiana Univ. Math.
J. 
14 
Endpoint bounds for the bilinear
Hilbert transform 
C. Thiele 
1403.5978 
Trans. Amer. Math. Soc. 368
(2016), no. 6, 3931–3972. 
13 
Grisvard's shift theorem near
L^infinity and Yudovich theory on polygonal domains 
R. Temam 
1310.5444 
SIAM J. Math. Anal. 47
(2015), no. 1, 159178 
12 
On weighted norm inequalities for
the Carleson and WalshCarleson operators 
A. Lerner 
1312.0833 
J. London Math. Soc. 90
(2014), no. 3, 654674 
11 
WeakL^p bounds for the Carleson
and WalshCarleson operators 
1312.0398 
C. R. Math. Acad. Sci. Paris
352 (2014), no. 4, 327331 

10 
Lacunary Fourier and
WalshFourier series near L^1 
1304.3943 
Collect. Math. 65
(2014), no. 2, 219232 

9 
Logarithmic L^p bounds for
maximal directional singular integrals in the plane 
C. Demeter 
1203.6624 
J. Geom. Anal. 24
(2014), no. 1, 375416 
8 
Endpoint bounds for the Quartile
Operator 
C. Demeter 
1206.3798

J. Fourier Anal. Appl. 19
(2013), no. 4, 836856 
7 
The Euler equations in planar
nonsmooth convex domains 
C. Bardos, R. Temam 
1212.0036 
J. Math. Anal. Appl. 407
(2013), no. 1 , 6989 
6 
The 3dimensional Oscillon
Equation 
G. S. Duane, R. Temam 
1307.1777

Boll. Unione Mat. Ital. Ser. IX
5 (2012), no. 1, 1954. 
5 
Asymptotics of the ColemanGurtin
model 
M. Chekroun, N. Glatt Holtz, V. Pata 
1006.2579 
Discrete Contin. Dyn. Syst. Ser.
S 4 (2011), no. 2, 351369. 
4 
Timedependent attractor for the
oscillon equation 
G. S. Duane, R. Temam  1009.2529 
Discrete Contin. Dyn. Syst. 29
(2011), no. 1, 141167. 
3 
Robust
exponential attractors for the strongly damped
wave equation with memory. II 
V. Pata  preprint only 
Russ. J. Math. Phys. 16
(2009), 6173. 
2 
Robust
exponential attractors for the strongly damped
wave equation with memory. I 
V. Pata  preprint only 
Russ. J. Math. Phys. 15
(2008), 301315. 
1 
On the strongly
damped wave equation with memory 
V. Pata, S. Zelik 
preprint only 
Indiana Univ. Math. J. 57
(2008), no. 2, 757780. 