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Abstract. We introduce a version of logic for metric structures suitable for applications
to C*-algebras and tracial von Neumann algebras. We also prove a purely model-theoretic
result to the effect that the theory of a separable metric structure is stable if and only if all
of its ultrapowers associated with nonprincipal ultrafilters on N are isomorphic even when
the Continuum Hypothesis fails.

1. Introduction

The present paper is a companion to [10]. The latter paper was written in a way that
completely suppressed explicit use of logic, and model theory in particular, in order to be
more accessible to operator algebraists. Among other results, we will prove a metatheorem
(Theorem 5.6) that explains results of [10], as well as the word ‘stability’ in its title.

We will study operator algebras using a slightly modified version of the model theory
for metric structures. This is a logical framework whose semantics are well-suited for the
approximative conditions of analysis; as a consequence it plays the same role for analytic
ultrapowers as first order model theory plays for classical (set theoretic) ultrapowers. We
show that the continuum hypothesis (CH) implies that all ultrapowers of a separable metric
structure are isomorphic, but under the negation of CH this happens if and only if its theory
is stable. Stability is defined in logical terms (the space of ϕ-types over a separable model
is itself separable with a suitable topology), but it can be characterized as follows: a theory
is not stable if and only if one can define arbitrarily long finite “uniformly well-separated”
totally ordered sets in any model, a condition called the order property. Provided that the
class of models under consideration (e.g., II1 factors) is defined by a theory – not always
obvious or even true – this brings the main question back into the arena of operator algebras.
To deduce the existence of nonisomorphic ultrapowers under the negation of CH, one needs
to establish the order property by defining appropriate posets. We proved in [10] that all
infinite-dimensional C*-algebras and II1 factors have the order property, while tracial von
Neumann algebras of type I do not. In a sequel paper we will use the logic developed here
to obtain new results about isomorphisms and embeddings between II1 factors and their
ultrapowers.

We now review some facts and terminology for operator algebraic ultrapowers that we will
use throughout the paper; this is reproduced for convenience from [10].

A von Neumann algebra M is tracial if it is equipped with a faithful normal tracial state tr.
A finite factor has a unique tracial state which is automatically normal. The metric induced
by the `2-norm, ‖a‖2 =

√
tr(a∗a), is not complete on M , but it is complete on the (operator
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norm) unit ball of M . The completion of M with respect to this metric is isomorphic to a
Hilbert space (see, e.g., [4] or [17]).

The algebra of all sequences in M bounded in the operator norm is denoted by `∞(M).
If U is an ultrafilter on N then

cU = {~a ∈ `∞(M) : limi→U ‖ai‖2 = 0}

is a norm-closed two-sided ideal in `∞(M), and the tracial ultrapower MU (also denoted by∏
UM) is defined to be the quotient `∞(M)/cU . It is well-known that MU is tracial, and a

factor if and only if M is—see, e.g., [4] or [24]; this also follows from axiomatizability (§3.2)
and  Loś’s theorem (Proposition 4.3 and the remark afterwards).

Elements of MU will either be denoted by boldface Roman letters such as a or represented
by sequences in `∞(M). Identifying a tracial von Neumann algebra M with its diagonal
image in MU , we will also work with the relative commutant of M in its ultrapower,

M ′ ∩MU = {b : (∀a ∈M)ab = ba}.

Tracial ultrapowers were first constructed in the 1950s and became standard tools after the
groundbreaking papers of McDuff ([19]) and Connes ([7]). Roughly speaking, the properties
of an ultrapower are the approximate properties of the initial object; see [23] for a recent
discussion of this.

In defining ultrapowers for C*-algebras (resp. groups with bi-invariant metric), cU is taken
to be the sequences that converge to zero in the operator norm (resp. converge to the identity
in the metric ([21])). All these constructions are special cases of the ultrapower/ultraproduct
of metric structures (see §2, also [1] or [13]).

2. Logic

The purpose of this section is to introduce a logic which has some features geared to the
treatment of C∗-algebras and von Neumann algebras. In a treatment of such structures in
bounded continuous logic (see [3]), it is typical to consider different sorts of balls of increasing
radius. The logic presented here is entirely equivalent to that formulation but allows us to
introduce function symbols like + and · without treating them as infinitely many different
functions mapping between sorts. This distinction is somewhat cosmetic but the treatment
of terms in this logic highlights an issue that is common to both this logic and the multi-
sorted version. Details are given below but to make clear what is at stake, suppose we are
considering a normed linear space and we wish to assert that the unit ball is convex. The
operation + when restricted to the unit ball would most naturally map to the ball of radius
2. Scalar multiplication by 1/2 maps the ball of radius 2 into the unit ball and so a natural
way to set things up would be to have the term (x + y)/2 send the unit ball to itself and
so the syntax guarantees that the unit ball is convex. If on the other hand, the scalar 1/2
on the ball of radius 2 was said to have range that same ball (a logical possibility), then
(x + y)/2 syntactically would only map the unit ball to the ball of radius 2 and we would
need to have an axiom that said that this term in fact has range in the unit ball. Issues of
the axiomatizability of the classes of structures we are dealing with are bound up with the
choice of range of terms in our language and are highlighted below.
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2.1. Language. A language consists of

• Sorts, S, and for each sort S ∈ S, a set of domains DS meant to be domains of
quantification, and a privileged relation symbol dS intended to be a metric. Each
sort comes with a distinct set of variables.
• Sorted functions, f : S1 × . . . × Sn → S together with, for every choice of domains

Di ∈ DSi
, a Df

D̄
∈ DS and for each i, a uniform continuity modulus δD̄,τi , i.e., a

real-valued function on R, where D̄ = 〈D1, . . . , Dn〉.
• Sorted relations R on S1× . . .×Sn such that for every choice of domains D̄ as above,

there is a number NR
D̄

as well as uniform continuity moduli dependent on i and D̄.
• Terms are formed by the usual composition of function symbols and variables. They

inherit codomains and series of uniform continuity moduli from this composition.

2.2. Structures. A structure M assigns to each sort S ∈ S, M(S), a metric space where
dS is interpreted as the metric. For each D ∈ DS, M(D) is a subset of M(S) complete with
respect to dS. The collection {M(D) : D ∈ DS} covers M(S).

Terms τ are interpreted as functions on a structure in the usual manner. If τM is the
interpretation of τ and D̄ is a choice of domains from the relevant sorts then τM : M(D̄)→
M(Dτ

D̄
) and τM is uniformly continuous as specified by the δD̄,τ ’s when restricted to M(D̄).

This means for instance that for every ε > 0, if a, b ∈M(D1) and ci ∈M(Di) for i = 2, . . . , n

then dS(a, b) < δD̄,τ1 (ε) implies dS′(τ(a, c̄), τ(b, c̄)) ≤ ε, where S is the sort associated to D1

and S ′ is the sort associated with the range of τ .
Sorted relations are maps RM : S1 × . . .× Sn → R. They are handled similarly to sorted

functions; uniform continuity is as above when restricted to the appropriate domains and a
relation R is bounded in absolute value by NR

D̄
when restricted to M(D̄).

2.3. Examples.

2.3.1. C*-algebras. We will think of a C*-algebra A as a one-sorted structure with sort U
for the algebra itself. The domains for U are Dn for every n ∈ N and are interpreted as all
x ∈ A with ‖x‖ ≤ n. The metric on U is

dU(a, b) = ‖a− b‖.

The functions in the language will be:

• The constant 0 which will be in D1. Note it is a requirement of the language to say
this.
• For every λ ∈ C a unary function symbol also denoted λ to be interpreted as scalar

multiplication. For simplicity we shall write λx instead of λ(x).
• A unary function symbol ∗ for involution.
• Binary function symbols + and ·.

Prescribing the uniform continuity moduli is straightforward.
If A is a C*-algebra then there is a model,M(A), in LC∗ associated to it which is essentially

A itself endowed with the domains Dn interpreted as the operator norm n-ball.
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2.3.2. Tracial von Neumann algebras. Tracial von Neumann algebras will be treated as a one-
sorted structure with domains Dn which as in the example of C*-algebras will be interpreted
as the operator norm n-ball. The metric d will be the metric arising from the `2 norm coming
from the trace.

The functions in the language are, in addition to functions from §2.3.1,

• The constant 1 in D1.
• Two unary relation symbols trr and tri for the real and imaginary parts of the trace

function. We will often just write tr and assume that the expression can be decom-
posed into the real and imaginary parts.

Again, this describes a language LTr once we add the requirements about bounds on the
range and uniform continuity.

If N is a tracial von Neumann algebra then there is a model,M(N), in LTr associated to
it which is essentially N itself with the domains interpreted as above.

Remark 2.1. We emphasize that the operator norm is not a part of the language, and that
it is not even a definable relation. Note that all relations are required to be uniformly
continuous functions, and ‖ · ‖ is not uniformly continuous with respect to ‖ · ‖2.

2.3.3. Unitary groups. The syntax for logic of unitary groups is simpler than that of tracial
von Neumann algebras or C*-algebras. In this case the metric is bounded and therefore we
can have one domain are equal to the universe U . We have function symbols for the identity,
inverse and the group operation. Since in this case our logic reduces to the standard logic of
metric structures as introduced in [1] we omit the straightforward details and continue this
practice of suppressing the details for unitary groups throughout this section.

2.4. Syntax.

• Formulas:
– If R is a relation and τ1, . . . , τn are terms then R(τ1, . . . , τn) is a basic formula.
– If f : Rn → R is continuous and ϕ1, . . . , ϕn are formulas, then f(ϕ1, . . . , ϕn) is a

formula.
– If D ∈ DS and ϕ is a formula then both supx∈D ϕ and infx∈D ϕ are formulas.

• Formulas are interpreted in the obvious manner in structures. The boundedness of
relations when restricted to domains is essential to guarantee that the sups and infs
exist when interpreted. For a fixed formula ϕ and real number r, the expressions
ϕ ≤ r and r ≤ ϕ are called conditions and are either true or false in a given inter-
pretation in a structure.

2.4.1. The expanded language. In the above definition it was taken for granted that we have
an infinite supply of distinct variables appearing in terms. In §4.3 below we shall need to
introduce a set of new constant symbols C. Each c ∈ C is assigned a sort S(c) and a domain.
In the expanded language LC both variables and constant symbols from C appear in terms.
Formulas and sentences in LC are defined as above. Note that, since the elements of C are
not variables, we do not allow quantification over them.

2.5. Theories and elementary equivalence. A sentence is a formula with no free vari-
ables. If ϕ is a sentence and M is a structure then the result of interpreting ϕ in M is a
real number, ϕM. The function which assigns these numbers to sentences is the theory of
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M, denoted by Th(M). Because we allow all continuous functions as connectives, in partic-
ular the functions |x− λ|, the theory of a model M is uniquely determined by its zero-set,
{ϕ : ϕM = 0}. We shall therefore adopt the convention that a set of sentences T is a theory
and say that M is a model of T , M |= T , if ϕM = 0 for all ϕ ∈ T .

The following is proved by induction on the complexity of the definition of ψ.

Lemma 2.2. Suppose M is a model and ψ(x̄) is a formula, possibly with parameters from
M . For every choice of D̄ sequence of domains consistent with the sorts of the variables,
ψM is a uniformly continuous function on M(D̄) into a compact subset of R.

If Θ: M→N is an isomorphism then ψM = ψN ◦Θ. �

Two modelsM and N are elementarily equivalent if Th(M) = Th(N ). A map Θ: M→
N is an elementary embedding if for all formulas ψ with parameters in M , we have ψM =
ψN ◦Θ.

If M is a submodel of N and the identity map from M into N is elementary then we
say thatM is an elementary submodel of N . It is not difficult to see that every elementary
embedding is an isomorphism onto its image,1 but not vice versa.

3. Axiomatizability

Definition 3.1. A category C is axiomatizable if there is a language L (as above), theory
T in L, and a collection of conditions Σ such that C is equivalent to the category of models
of T with morphisms given by maps that preserve Σ.

The reason for being a little fussy about axiomatizability is that in the cases we wish to
consider, the models have more (albeit artificial) ‘structure’ than the underlying algebra (cf.
§2.3.1 and §2.3.2). The language of the model will contain operation symbols for all the
algebra operations (such as +, · and ∗) and possibly some distinguished constant symbols
(such as the unit) and predicates (e.g., a distinguished state on a C*-algebra). It will also
contain domains that are not part of the algebra’s structure.

In particular then, when we say that we have axiomatized a class of algebras C, we will
mean that there is a first order continuous theory T and specification of morphisms such
that

• for any A ∈ C, there is a model M(A) of T determined up to isomorphism;
• for any model M of T there is A ∈ C such that M is isomorphic to M(A);
• if A,B ∈ C then there is a bijection between Hom(A,B) and Hom(M(A),M(B)).

Proving that a category is axiomatizable frequently involves somewhat tedious syntactical
considerations. However, once this is proved we can apply a variety of model-theoretic tools
to study this category. In particular, we can immediately conclude that the category is
closed under taking ultraproducts—a nontrivial theorem in the case of tracial von Neumann
algebras. From here it also follows that some natural categories of operator algebras are not
axiomatizable (see Proposition 6.1).

1an isomorphism in the appropriate category; in case of operator algebras this is interpreted as ‘*-
isomorphism’
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3.1. Axioms for C*-algebras. We continue the discussion of model theory of C*-algebras
started in §2.3.1. First we introduce two notational shortcuts. If one wants to write down
axioms to express that τ = σ for terms τ and σ then one can write

ϕD̄ := sup
ā∈D̄

dU(τ(ā), σ(ā))

where D̄ ranges over all possible choices of domains. Note that this is typically an infinite
set of axioms. Remember that for a model to satisfy ϕD̄, this sentence would evaluate to 0
in that model. If this sentence evaluates to 0 for all choices of D̄ then clearly τ = σ in that
model.

If one wants to write down axioms to express that ϕ ≥ ψ for formulas ϕ and ψ then one
can write

sup
ā∈D̄

max(0, (ψ(ā)− ϕ(ā)))

where D̄ ranges over all possible choices of domains. Again, we will get the required inequality
if all these sentences evaluate to 0 in a model.

Using the above conventions, we are taking the universal closures of the following formulas,
where x, y, z, a, b, range over the algebra and λ, µ range over the complex numbers.

Here are some sentences that evaluate to zero in a C*-algebra A. The first item guarantees
that we have a C-vector space.

(1) x+ (y+ z) = (x+ y) + z, x+ 0 = x, x+ (−x) = 0 (where −x is the scalar −1 acting
on x), x+ y = y + x, λ(µx) = (λµ)x, λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx.

(2) 1x = x, x(yz) = (xy)z, λ(xy) = (λx)y = x(λy), x(y + z) = xy + xz; now we have a
C-algebra.

(3) (x∗)∗ = x, (x+ y)∗ = x∗ + y∗, (λx)∗ = λ̄x∗.
(4) (xy)∗ = y∗x∗.
(5) dU(x, y) = dU(x− y, 0); we will write ‖x‖ for dU(x, 0).

(6) ‖xy‖ ≤ ‖x‖‖y‖.
(7) ‖λx‖ = |λ|‖x‖.
(8) (C*-equality) ‖xx∗‖ = ‖x‖2.
(9) supa∈D1

‖a‖ ≤ 1.

One issue here is that these axioms are too weak to guarantee that D1 is the operator norm
unit ball. To get around this we expand the language of C∗-algebras to include a function
symbol τp for every *-polynomial p in one variable. The symbol τp will have the same uniform
continuity modulus as p. In order to determine the proper codomains, for every n, let m be
the least integer greater than or equal to max{‖p(a)‖ : a ∈ M,M ∈ C and ‖a‖ ≤ n} where
C is the class of C∗-algebras. We will require τp : Dn → Dm and we will add the universally
quantified axioms

(10) τp(x) = p(x)

for all polynomials p. This will force the polynomial p to behave well with respect to where
its range lands. To see the effect of these axioms, we do a small calculation.

Suppose that M is a structure that satisfies axioms 1 through 9 above. Suppose a ∈ M ,
‖a‖ ≤ 1 and a ∈ Dn(M). Define

tn(x) =

{
1 0 ≤ x ≤ 1

1√
x

1 < x ≤ n
6



and consider f(u) = utn(u∗u). If we want to compute the norm of f(u) for ‖u‖ ≤ n, we see
that ‖f(u)‖2 = ‖tn(u∗u)u∗utn(u∗u)‖ = ‖g(u∗u)‖ where g(x) = xt2n(x). Since

g(x) =

{
x 0 ≤ x ≤ 1
1 1 < x ≤ n

we obtain that the norm of f(u) is at most 1 when ‖u‖ ≤ n.
Now fix polynomials pk(x) which tend to tn(x) from below on the interval [0, n]. By doing

a calculation similar to the one above, the *-polynomial qk = upk(u
∗u) sends operators of

norm ≤ n to operators of norm ≤ 1. This means that τqk sends elements of Dn to elements
of D1 by the specification of our language for C∗-algebras. Moreover, apk(a

∗a) tends to a as
k tends to infinity. Since D1(M) is complete, we obtain that a ∈ D1(M).

Proposition 3.2. The class of C*-algebras is axiomatizable by theory TC∗ consisting of
axioms (1)–(10).

Proof. It is clear that for a C*-algebra A the modelM(A) as defined in §2.3.1 satisfies TC∗ .
Conversely, if a model M of LC∗ satisfies TC∗ then the algebra AM obtained from M by
forgetting the domains is a C*-algebra by Gel’fand-Naimark.

To see that this provides an equivalence of categories, we only need to show that M(AM) ∼=
M. To see this, we must show that the domains on M are determined by AM. Since
multiplication by a scalar r provides a bijection between the operator norm unit ball and
the ball of radius r, it suffices to show that the operator norm unit ball and those elements
of D1(M) coincide. By axiom 9, we have that the latter is contained in the former. The
other direction is just the calculation we did immediately before the Proposition. �

3.2. Axioms for tracial von Neumann algebras. We continue our discussion of model
theory of tracial von Neumann algebras from §2.3.2. Axioms for tracial von Neumann alge-
bras and II1 factors appear in the context of bounded continuous logic in [2]; those axioms
are restricted to axiomatizing the norm one unit ball. We feel in this context axiomatizing
von Neumann algebras in the logic described in the previous section makes the axioms more
natural. Here are some sentences that evaluate to zero in a tracial von Neumann algebra N :

(11) All axioms (1)–(5) plus 1x = x = x1 for the constant 1 of N . In case of (5) we will
write ‖x‖2 for dU(x, 0).

(12) tr(x+ y) = tr(x) + tr(y)

(13) tr(x∗) = tr(x), tr(λx) = λ tr(x), tr(xy) = tr(yx), tr(1) = 1,
(14) tr(x∗x) = ‖x‖2

2.

Any model of these axioms will be a tracial *-algebra. The remaining axiom will guarantee
that the relationship between the domains and the 2-norm is correct.

(15) For every n,m ∈ N,

sup
a∈Dn

sup
x∈Dm

max{0, ‖ax‖2 − n‖x‖2}

In addition to these axioms, we also introduce terms τp for all unary *-polynomials p as
discussed above for C∗-algebras.

Proposition 3.3. The class of tracial von Neumann algebras is axiomatizable by theory TTr

consisting of axioms (10)–(15).
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Proof. It is clear that for a tracial von Neumann algebra N the model M(N) as defined in
§2.3.2 satisfies TTr. Assume M satisfies TTr. To see that in the sort U we have a tracial
von Neumann algebra suppose A is the underlying set for U in M. Then A is a complex
pre-Hilbert space with inner product given by tr(y∗x). Left multiplication by a ∈ A is a
linear operator on A and axiom (15) guarantees that a is bounded. The operation ∗ is the
adjoint because for all x and y we have 〈ax, y〉 = tr(y∗ax) = tr((a∗y)∗x) = 〈x, a∗y〉. Thus A
is faithfully represented as a *-algebra of Hilbert space operators. We know that Dn(A) is
complete with respect to the 2-norm for all n and the 2-norm induces the strong operator
topology on A in this representation; it follows from the Kaplansky density theorem that A
is a tracial von Neumann algebra.

As in the case of C*-algebras above, to show that we have an equivalence of categories, it
will suffice to show that ifM is a model of the TTr then D1(A) is given by the operator norm
unit ball on A. Axiom (15) guarantees that a ∈ D1(A) then ‖a‖ ≤ 1 and the functional
calculus argument from the proof of Proposition 3.2 shows D1(A) equals the operator norm
unit ball. �

For a in a tracial von Neumann algebras define the following:

ξ(a) =
√
‖a‖2

2 − tr2(a),

η(a) = sup
b∈D1

‖ab− ba‖2.

Since ξ and η are interpretations of terms in the language of tracial von Neumann algebras,
the following is a sentence of this language.

(16) supa∈D1
max{0, (ξ(a)− η(a))}.

Also consider the axiom

(17) infa∈D1(‖aa∗ − (aa∗)2‖2 + | tr(aa∗)− 1/π|).
Proposition 3.4. (1) The class of tracial von Neumann factors is axiomatizable by the

theory consisting of axioms (10)–(16).
(2) The class of II1 factors is axiomatizable by the theory TII1 consisting of axioms (10)–

(17).

Proof. For (1), by Proposition 3.3, it suffices to prove that if M is a tracial von Neumann
algebra then axiom (16) holds in M if and only if M is a factor. If it is not a factor, let p

be a nontrivial central projection. Then ξ(p) =
√

tr(p)− tr(p)2 > 0 but η(p) = 0, therefore
(16) fails in M . If it is a factor, the inequality η(a) ≥ ξ(a) follows from [10, Lemma 4.2].

For (2) we need to show that axiom (17) holds in a tracial factor M if and only if M
is type II1. When M is type II1, (17) is satisfied by taking a to be a projection of trace
1/π. On the other hand, a tracial factor M not of type II1 is some matrix factor Mk. If
Mk were to satisfy (17), by compactness of the unit ball there would be a ∈ Mk satisfying
‖(aa∗) − (aa∗)2‖2 = 0 and | tr(aa∗) − 1/π| = 0. Thus aa∗ ∈ Mk would be a projection of
trace 1/π, which is impossible. (Of course this argument still works if 1/π is replaced with
any irrational number in (0, 1).) �

4. Model-theoretic toolbox

In the present section we introduce variants of some of the standard model-theoretic tools
for the logic described in §2.
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4.1. Ultraproducts. Assume Mi, for i ∈ I, are models of the same language and U is an
ultrafilter on I. The ultraproduct

∏
UMi is a model of the same language defined as follows.

In a model M, we write SM and DM for the interpretations S and D in M. For each
sort S ∈ S, let

XS = {ā ∈
∏

i∈I S
Mi : for some D ∈ DS, {i ∈ I : ai ∈ DMi} ∈ U}.

For ā and b̄ in XS, d′S(ā, b̄) = limi→U d
Mi
S (ai, bi) defines a pseudo-metric on XS. Let SM

′
be

the quotient space of XS with respect to the equivalence ā ∼ b̄ iff d′S(ā, b̄) = 0 and let dS be
the associated metric. For D ∈ DS, let DM

′
be the quotient of

{ā ∈ XS : {i ∈ I : ai ∈ DMi} ∈ U}.
All the functions and predicates are interpreted in the natural way. Their restrictions to
each D̄ are uniformly continuous and respect the corresponding uniform continuity moduli.
If Mi = M for all i then we call the ultraproduct an ultrapower and denote it by MU .
The ‘generalized ultraproduct construction’ as introduced in [13, p. 308–309] reduces to
the model-theoretic ultraproduct in the case of both tracial von Neumann algebras and
C*-algebras.

We record a straightforward consequence of the definitions and the axiomatizability, that
the functors corresponding to taking the ultrapower and defining a model commute. The
ultrapowers of C*-algebras and tracial von Neumann algebras are defined in the usual way.

Proposition 4.1. If A is a C*-algebra or a tracial von Neumann algebra and U is an
ultrafilter then M(AU) =M(A)U .

Corollary 4.2. A C*-algebra (or a tracial von Neumann algebra) A has nonisomorphic
ultrapowers if and only if the model M(A) has nonisomorphic ultrapowers.

Proof. This is immediate by Proposition 3.2, Proposition 3.3 and Proposition 4.1. �

It is worth remarking that although the proof of Proposition 4.1 is straightforward, this
relies on a judicious choice of domains of quantification. In general, it is not true that if
one defines domains for a metric structure then the domains have the intended or standard
interpretation in the ultraproduct. Von Neumann algebras themselves are a case in point.
If we had defined our domains so that Dn were those operators with l2-norm less than or
equal to n then there would be several problems. The most glaring is that these domains are
not complete; even if one persevered to an ultraproduct, the resulting object would contain
unbounded operators.

Ward Henson has pointed out to us that this same problem with domains manifests itself in
pointed ultrametric spaces. If one defines domains as closed balls of radius n about the base
point, there is no reason to expect that the domains in an ultraproduct will also be closed
balls. This unwanted phenomenon can be avoided by imposing a geodesic-type condition on
the underlying metric; see for instance [6, Section 1.8].

The following is  Loś’s theorem, also known as the Fundamental Theorem of ultraproducts
(see [1, Theorem 5.4]). It is proved by chasing the definitions.

Proposition 4.3. Let Mi, i ∈ N, be a sequence of models of language L, U be an ultrafilter
on N and N =

∏
UMi.

(1) If φ is an L-sentence then φN = limi→U φ
Mi.
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(2) If φ is an L-formula then φN (a) = limi→U φ
Mi(ai), where (ai : i ∈ N) is a representing

sequence of a.
(3) The diagonal embedding of a model M into MU is elementary.

Together with the axiomatizability (Propositions 3.2 and 3.3) and Proposition 4.1, this
implies the well-known fact that the ultraproduct of C*-algebras (tracial von Neumann
algebras, II1 factors, respectively) is a C*-algebra (tracial von Neumann algebra, II1 factor,
respectively).

In the setting of tracial von Neumann algebras, we have that for any formula φ(x1, . . . , xn)
with variables from the algebra sort there is a uniform continuity modulus δ such that for
every tracial von Neumann algebraM, φ defines a function g on the operator norm unit ball
ofM which is uniformly continuous with respect to δ and naturally extends to the operator
norm unit ball of any ultrapower of M.

In [10] we dealt with functions g satisfying the properties in the previous paragraph and
used them to define a linear ordering showing that some ultrapowers and relative commutants
are nonisomorphic. Using model theory, we can interpret this in a more general context and
instead of ‘tracial von Neumann algebra’ consider g defined with respect to any axiomatizable
class of operator algebras. Clearly, Lemma 2.2 and Proposition 4.3 together imply the
following, used in the proof of Theorem 5.6.

Corollary 4.4. If ψ is an n-ary formula, then the function g defined to be the interpretation
of ψ on a tracial von Neumann algebra M satisfies the following [10, Properties 2.1]:

(G1) g defines a uniformly continuous function on the n-th power of the unit ball of M ;
the uniform continuity does not depend on the particular algebra i.e. for every ε there
is a δ independent of the choice of algebra;

(G2) For every ultrafilter U the function g can be canonically extended to the n-th power
of the unit ball of the ultrapower (M≤1)U = (MU)≤1. �

4.2. Downwards Löwenheim–Skolem Theorem. The cardinality of the language and
the number of formulas are crude measures of the Löwenheim-Skolem cardinal for continuous
logic. We define a topology on formulas relative to a given continuous theory in order to
give a better measure.

Suppose T is a continuous theory in a language L. Fix variables x̄ = x1 . . . xn and domains
D̄ = D1 . . . Dn consistent with the sorts of the x’s. For formulas ϕ and ψ defined on D̄, set

dTD̄(ϕ(x̄), ψ(x̄)) = sup{ sup
x̄∈(D̄M)n

|ϕ(x̄)− ψ(x̄)| :M |= T}.

Now dT
D̄

is a pseudo-metric; let χ(T, D̄) be the density character of this pseudo-metric on the
formulas in the variables x̄ and define the density character of L with respect to T , χ(T ), as∑

D̄ χ(T, D̄).
We will say that L is separable if the density character of L is countable with respect to

all L-theories. Note that the languages considered in this paper, in particular LTr and LC∗ ,
are separable.

Proposition 4.5. Assume L is a separable language. Then for every model M of L the set
of all interpretations of formulas of L is separable in the uniform topology.
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Proof. Since we are allowing all continuous real functions as propositional connectives (§2.1)
the set of formulas is not countable. However, a straightforward argument using polynomials
with rational coefficients and the Stone–Weierstrass theorem gives a proof. �

The following is a version of the downward Löwenheim–Skolem theorem (cf. [1, Propo-
sition 7.3]). Some of its instances have been rediscovered and applied in the context of
C*-algebras (see, e.g., [22] or the discussion of SI properties in [4]). We use the notation
χ(X) to represent the density character of a set X in some ambient topological space.

Theorem 4.6. Suppose that M is a metric structure and X ⊆ M . Then there is N ≺ M
such that X ⊆ N and χ(N ) ≤ χ(Th(M)) + χ(X).

Proof. Fix F , a dense set of formulas, witnessing χ(Th(M)). Define two increasing sequences
〈Xn : n ∈ N〉 and 〈En : n ∈ N〉 of subsets of M inductively so that:

(1) X0 = X;
(2) En is dense in Xn and χ(Xn) = |En| for all n ∈ N;
(3) χ(Xn) ≤ χ(Th(M)) + χ(X); and,
(4) for every rational number r, formula ϕ(x, ȳ) ∈ F , domain D in the sort of the variable

x and ā = a1, . . . , ak ∈ En where k is the length of ȳ, ifM |= infx∈D ϕ(x, ā) ≤ r then
for every n > 0 there is b ∈ Xn+1 ∩D(M) such that M |= ϕ(b, ā) ≤ r + (1/n).

It is routine to check that ∪n∈NXn is the universe of an elementary submodel N ≺M having
the correct density character. �

Corollary 4.7. Assume L is separable. If M is a model of L and X is an infinite subset
of its universe, then M has an elementary submodel whose density character is not greater
than that of X and whose universe contains X.

4.3. Types. Suppose that M is a model in a language L, A ⊆ M and x̄ is a tuple of free
variables thought of as the type variables.

We follow [1, Remark 3.13] and say that a condition over A is an expression of the form
ϕ(x̄, ā) ≤ r where ϕ ∈ L, ā ∈ A and r ∈ R. If N �M and b̄ ∈ N then b̄ satisfies ϕ(x̄, ā) ≤ r
if N satisfies ϕ(b̄, ā) ≤ r.

Fix a tuple of domains D̄ consistent with x̄, i.e., if xi is of sort S then Di is a domain in
S. A set of conditions over A is called a D̄-type over A. A D̄-type is consistent if for every
finite p0 ⊆ p and ε > 0 there is b̄ ∈ D̄(M) such that if “ϕ(x̄, ā) ≤ r” ∈ p0 then M satisfies
ϕ(b̄, ā) ≤ r + ε. We say that a D̄-type p over A is realized in N � M if there is ā ∈ D̄(N)
such that ā satisfies every condition in p. The following proposition links these two notions:

Proposition 4.8. The following are equivalent:

(1) p is consistent.
(2) p is realized in some N �M.
(3) p is realized in an ultrapower of M.

Proof. 3) implies 2) and 2) implies 1) are clear. To see that 1) implies 3), let F ⊆ p×R+ be a
finite set, and let b̄F ∈ D̄(M) satisfy ϕ(x̄, ā) ≤ r+ε for every (ϕ(x̄, ā) ≤ r, ε) ∈ F . Let U be a
non-principal ultrafilter over Pfin(p×R+). Then p is realized by (b̄F : F ∈ Pfin(p×R+))/U
in MU . �

A maximal consistent D̄-type is called complete. Let SD̄(A) be the set of all complete
D̄-types over A. In fact, p is a complete D̄-type over A iff p is the set of all conditions true
for some ā ∈ D̄(N ) where N �M, by Lemma 4.8 and Proposition 4.3.
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Notation 4.9. Assume p is a complete type over A and φ(x, ā) is a formula with parameters
ā in A. Since p is consistent and maximal, there is the unique real number r = sup{s ∈ R :
the condition φ(x, ā) ≤ s is in p}. In this situation we shall extend the notation by writing
φ(p, ā) = r. We shall also use expressions such as |φ(p, ā)− φ(p, b̄)| > ε.

We will also often omit the superscript D̄ when it either does not matter or is implicit.
The set SD̄(A) carries two topologies: the logic topology and the metric topology.
Fix ϕ, ā ∈ A and r ∈ R. A basic closed set in the logic topology has the form

{p ∈ SD̄(A) : ϕ(x̄, ā) ≤ r ∈ p}
The compactness theorem shows that this topology is compact and it is straightforward that
it is Hausdorff.

We can also put a metric on SD̄(A) as follows: for p, q ∈ SD̄(A) define

d(p, q) = inf{d(a, b) : there is an N �M, a realizes p and b realizes q}.
The metric topology is in general finer than the logic topology due to the uniform continuity
of formulas.

Example 4.10. Let M be a model corresponding to a tracial von Neumann algebra or a
unital C*-algebra.

(1) The relative commutant type of M is the type over M consisting of all conditions of
the form

d([a, x], 0) = 0

for a ∈M .
(2) Another type over M consists of all conditions of the form

d(a, x) ≥ ε

for a ∈M and a fixed ε > 0.

While the relative commutant type is trivially realized by the center of M, the type
described in (2) is never realized in M. However, the second type is sometimes consistent.
For instance, if M is an infinite dimensional C*-algebras then (2) is consistent. Hence not
every consistent type over M is necessarily realized in M.

4.4. Saturation. A model M of language L is countably saturated if for every countable
subset X of the universe of M, every consistent type over X is realized in M. More
generally, if κ is a cardinal then M is κ-saturated if for every subset X of the universe of
M of cardinality < κ every consistent type over X is realized in M. We say that M is
saturated if it is κ-saturated where κ is the density character of M.

Thus countably saturated is the same as ℵ1-saturated, where ℵ1 is the least uncountable
cardinal. The following is a version of a classical theorem of Keisler for the logic of metric
structures.

Proposition 4.11. If Mi, for i ∈ N, are models of the same language and U is a nonprin-
cipal ultrafilter on N then the ultraproduct

∏
UMi is countably saturated. If M is separable

then the relative commutant of M in MU is countably saturated.

Proof. A straightforward diagonalization argument, cf. the proof of Proposition 4.8. �

The following lemma is a key tool.
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Lemma 4.12. Assume N is a countably saturated L-structure, A and B are separable L-
structures, and B is an elementary submodel of A. Also assume Ψ: B → N is an elementary
embedding. Then Ψ can be extended to an elementary embedding Φ: A → N .

A

Ψ̃

�$
B Ψ //

id

OO

N
Proof. Enumerate a countable dense subset of A as an, for n ∈ N, and fix a countable dense
B0 ⊆ B. Let tn be the type of an over B0 ∪ {aj : j < n}. If t is a type over a subset X of A
then by Ψ(t) we denote the type over the Ψ-image of X obtained from t by replacing each
a ∈ A by Ψ(a). By countable saturation realize Ψ(t0) in N and denote the realization by
Ψ(a0) in order to simplify the notation. The type Ψ(t1) is realized in N by an element that
we denote by Ψ(a1). Continuing in this manner, we find elements Ψ(an) in N , for n ∈ N.
Since the sequence an, for n ∈ N, is dense in A, by elementarity the map an 7→ Ψ(an) can
be extended to an elementary embedding Φ: A → N as required. �

Note that the analogue of Lemma 4.12 holds when, instead of assuming A to be separa-
ble, N is assumed to be κ-saturated for some cardinal κ greater than the density character
of A. Using a transfinite extension of Cantor’s back-and-forth method, Proposition 4.7 and
this analogue of Lemma 4.12 one proves the following.

Proposition 4.13. Assume L is a separable language. If M and N are elementarily equiv-
alent saturated models of L that have the same uncountable density character then they are
isomorphic. �

For simplicity, in the following discussion we refer to tracial von Neumann algebras (C*-
algebras, unitary groups of a tracial von Neumann algebra or a C*-algebra, respectively) as
‘algebras.’

Corollary 4.14. Assume the Continuum Hypothesis. If M is an algebra of density character
≤ c then all of its ultrapowers associated with nonprincipal ultrafilters are isomorphic. If M
is separable, then all of its relative commutants in ultrapowers associated with nonprincipal
ultrafilters are isomorphic.

Proof. The Continuum Hypothesis implies that such ultrapowers are saturated and by Propo-
sition 4.3, Proposition 4.11 and Proposition 4.13 they are all isomorphic. If M is separable,
then the isomorphism between the ultrapowers can be chosen to send the diagonal copy
of M in one ultrapower to the diagonal copy of M in the other ultrapower and therefore the
relative commutants are isomorphic. �

It should be noted that, even in the case when the Continuum Hypothesis fails, countable
saturation and a transfinite back-and-forth construction together show that ultrapowers of
a fixed algebra are very similar to each other.

Corollary 4.15. Assume M is a separable algebra and U and V are nonprincipal ultrafilters
on N. Then for all separable algebras N we have the following:

(1) N is a subalgebra of MU if and only if it is a subalgebra of MV ;
13



(2) N is a subalgebra of M ′ ∩MU if and only if N is a subalgebra of M ′ ∩MV .

Proof. These classes of algebras are axiomatizable, so instead of algebras we can work with
the associated models. Supposing that N ⊂ MU , apply the downward Löwenheim–Skolem
theorem (Proposition 4.7) to find an elementary submodel P ofMU whose universe contains
N and the diagonal copy of M . Now consider the elementary inclusion M ⊆ P , and use
Lemma 4.12 to extend the map which identifies M with the diagonal subalgebra of MV ,
the latter being countably saturated by Proposition 4.11. This extension carries P onto a
subalgebra of MV and restricts to an isomorphism from N onto its image. In case M and
N commute, their images in MV do too. �

We also record a refining of the fact that the relative commutants of a separable algebra
are isomorphic assuming CH.

Corollary 4.16. Assume M , V and U are as in Corollary 4.15. Then the relative commu-
tants M ′ ∩MU and M ′ ∩MV are elementarily equivalent.

Proof. By countable saturation of ultrapowers, a type p over the copy of M inside MU is
realized if and only the same type over the copy of M inside MV is realized. By considering
only types p that extend the relative commutant type the conclusion follows. �

The conclusion of Corollary 4.16 fails when M is the C*-algebra B(`2). By [11] CH implies
B(`2)′ ∩ B(`2)U is trivial for one U and infinite-dimensional for another. This implies that
the assumption of separability is necessary in Corollary 4.16.

5. Stability, the order property, and nonisomorphic ultrapowers

This section defines the two main model theoretic notions of the paper: stability and the
order property. We show that each is equivalent to the negation of the other (Theorem 5.5),
and that the order property is equivalent to the existence of nonisomorphic ultrapowers
when the continuum hypothesis fails (Theorem 5.6). While the analogue of the former fact
is well-known in the discrete case, we could not find a reference to the analogue of the latter
fact in the discrete case. We have already seen that when the continuum hypothesis holds
all ultrapowers are isomorphic (Corollary 4.14). (Of course we are talking about separable
structures with ultrapowers based on free ultrafilters of N.)

5.1. Stability.

Definition 5.1. We say a theory T is λ-stable if for any model M of T of density character
λ, the space of complete types S(M) has density character λ in the metric topology on
S(M). We say T is stable if it is stable for some λ and T is unstable if it is not stable.

For a theory T in a separable language one can show that T is stable if and only if it is
c-stable (see the proof of Theorem 5.5).

Our use of the term “stable” in this paper agrees with model theoretic terminology in
both continuous and discrete logic. Motivated by model theory, in 1981 Krivine and Maurey
defined a related notion of stability for Banach spaces that is now more familiar to many
analysts ([18]). It is characterized by the requirement

(*) lim
i→U

lim
j→V
‖xi + yj‖ = lim

j→V
lim
i→U
‖xi + yj‖
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for any uniformly bounded sequences {xi} and {yj}, and any free ultrafilters U ,V on N. One
can show ([16]) that a Banach space satisfies (*) if and only if no quantifier-free formula has
the order property in that structure(cf. §5.2), so model theoretic stability of the theory of a
Banach space X implies stability of Xin the sense of Krivine-Maurey.

We proved in [10] that all infinite-dimensional C*-algebras are unstable. The same cannot
be said for infinite-dimensional Banach algebras: take a stable Banach space and put the
zero product on it. However a stable Banach space can become unstable when it is turned
into a Banach algebra. We exhibit this behavior in Proposition 6.2 below.

5.2. The order property.

Definition 5.2. We say that a continuous theory T has the order property if

• there is a formula ψ(x̄, ȳ) with the lengths of x̄ and ȳ the same, and a sequence of
domains D̄ consistent with the sorts of x̄ and ȳ, and
• a model M of T and 〈āi : i ∈ N〉 ⊆ D̄(M)

such that

ψ(ai, aj) = 0 if i < j and ψ(ai, aj) = 1 if i ≥ j.

Note that these evaluations are taking place inM . Also note that by the uniform continuity
of ψ, there is some ε > 0 such that d(āi, āj) ≥ ε for every i 6= j where the metric here is
interpreted as the supremum of the coordinatewise metrics.

Proposition 5.3. Th(A) has the order property if and only if there is ψ and D̄ such that
for all n and δ > 0, there are a1, . . . , an ∈ D̄(A) such that

ψ(ai, aj) ≤ δ if i < j and ψ(ai, aj) ≥ 1− δ if i ≥ j.

Proof. Compactness. �

Definition 5.4. Suppose that M is a metric structure and p(x̄) ∈ SD̄(M) is a type. We say
that p is finitely determined if for every formula ϕ(x̄, ȳ), choice of domains D̄′ consistent
with the variables ȳ, and m ∈ N, there is k ∈ N and a finite set B ⊆ D̄(M) such that for
every c̄1, c̄2 ∈ D̄′(M) (see Notation 4.9)

sup
b̄∈B
|ϕ(b̄, c̄1)− ϕ(b̄, c̄2)| ≤ 1

k
⇒ |ϕ(p, c̄1)− ϕ(p, c̄2)| ≤ 1

m
.

Theorem 5.5. The following are equivalent for a continuous theory T :

(1) T is stable.
(2) T does not have the order property.
(3) If M is a model of T and p ∈ S(M) then p is finitely determined.

Proof. (1) implies (2) is standard: suppose that T has the order property via a formula θ
and choose any cardinal λ. Fix µ ≤ λ least such that 2µ > λ (note that 2<µ ≤ λ). By
compactness, using the order property, we can find 〈āi : i ∈ 2<µ〉 such that θ(āi, āj) = 0 if
i < j in the standard lexicographic order and 1 otherwise. Clearly, χ(S(A)) > χ(A) where
A = {āi : i ∈ 2<µ} so T is not λ-stable for any λ.

To see that (3) implies (1), fix a model M of T with density character λ where λχ(T ) = λ.
By assumption, every type over M is finitely determined and so there are at most λχ(T ) = λ
many types over M and so T is λ-stable.
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Finally, to show that (2) implies (3), suppose that there is a type over a model of T
which is not finitely determined. Fix p(x̄) ∈ SD̄(M), ϕ(x̄, ȳ), domains D̄′ consistent with
the variables ȳ and m ∈ N so that for all k and finite B ⊆ D̄(M), there are n1, n2 ∈ D̄′(M)
such that

max
b∈B
|ϕ(b, n1)− ϕ(b, n2)| ≤ 1/k

but

|ϕ(p, n1)− ϕ(p, n2)| > 1/m.

We now use this p to construct an ordered sequence. Define sequences aj, bj, cj and sets Bj

as follows: B0 = ∅. If we have defined Bj, choose bj, cj ⊆ D̄′(M) such that maxb∈Bj
|ϕ(b, bj)−

ϕ(b, cj)| ≤ 1/2m but |ϕ(p, bj)− ϕ(p, cj)| > 1/m.
Now choose aj ∈ D̄(M) so that aj realizes ϕ(x̄, bi) = ϕ(p, bi) and ϕ(x̄, ci) = ϕ(p, ci) for all

i ≤ j. Let Bj+1 = Bj ∪ {aj, bj, cj}. It follows that if i ≥ j then |ϕ(ai, bj)− ϕ(ai, cj)| > 1/m.
If i < j then |ϕ(ai, bj)− ϕ(ai, cj)| ≤ 1/2m since ai ∈ Bj. Consider the formula

θ(x1, y1, z1, x2, y2, z2) := |ϕ(x1, y2)− ϕ(x1, z2)|.
Then θ orders 〈ai, bi, ci : i ∈ N〉. �

Theorem 5.6. Suppose that A is a separable metric structure in a separable language.

(1) If the theory of A is stable then for any two non-principal ultrafilters U ,V on N,
AU ∼= AV .

(2) If the theory of A is unstable then the following are equivalent:

(a) A has fewer than 22ℵ0 nonisomorphic ultrapowers associated with nonprincipal
ultrafilters on N.

(b) for any two non-principal ultrafilters U ,V on N, AU ∼= AV ;
(c) the Continuum Hypothesis holds.

It is worth mentioning that Theorem 5.6 is true in the first order context, as can be
seen by considering a model of a first-order theory as a metric model with respect to the
discrete metric. Although this is undoubtedly known to many, we were unable to find a
direct reference. The proof of (1) will use tools from stability theory, and the reader may
want to refer to [3] for background.

Proof. (1) Assume that the theory of A is stable. We will show that AU is c-saturated and so
it will follow that AU ∼= AV no matter what the size of the continuum is (see Proposition 4.13).

So suppose that B ⊆ AU , |B| < c, and q is a type over B. We may assume that B is an
elementary submodel and that q is nonprincipal and complete. As the theory of A is stable,
choose a countable elementary submodel B0 ⊆ B so that q does not fork over B0. We shall
show that in AU one can always find a Morley sequence in q|B0 of size c.

Towards this end, fix a countable Morley sequence I in the type of q|B0 and let q̄ =
tp(I/B0), a type in the variables xn for n ∈ N. Since B0 is countable and the lan-
guage is separable, there are countably many formulas ψn(x1, . . . , xn, bn) over B0 such that
ψn(x1, . . . , xn, bn) = 0 ∈ q̄ and {ψn(x1, . . . , xn, bn) = 0 : n ∈ N} axiomatizes q̄.

Now let Di = {n ≥ i : infx ψi(x, bi(n)) < 1/i} For a fixed n, consider {i : n ∈ Di}. This set
has a maximum element; call it in. Now fix an1 , . . . , a

n
in ∈ A such that ψin(an1 , . . . , a

n
in , bin) <

1/in. Now consider the set J of all g : N → A such that g(n) ∈ {an1 , . . . , anin} for all n.
Any g ∈ J will satisfy q|B0 in AU since every element of I realized that type. If g0, . . . , gk
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are in J and distinct modulo U then they are independent over B0 since I was a Morley
sequence. To finish then, we need to see that there are c-many distinct g’s modulo U .
This follows from the fact that the in’s are not bounded. To see this, for a fixed m, let
X = {n ≥ m : infx ψm(x, b(n)) ≤ 1/m}. Pick any n ∈ X. We have that n ∈ Dm so in ≥ m
and we conclude that the in’s are not bounded.

Since |B| < c, there is a J0 of cardinality less than c such that B is independent from J
over J0. Choosing any a ∈ J \ J0 and using symmetry of non-forking remembering that J
is a Morley sequence over B0, it follows that a is independent from B over B0. Since B0 is
a model, q|B0 has a unique non-forking extension to B and it follows that a realizes q. This
finishes the proof of (1).

(2) If the Continuum Hypothesis holds then AU is always saturated and so for any two
ultrafilters U ,V , AU ∼= AV even if we fix the embedded copy of A (Corollary 4.14).

The implication (a) implies (c) follows from [12, Theorem 3] and of course (b) implies
(a). However, (b) implies (c) also can be proved by a minor modification of proof from
[10] (which is in turn a modification of a proof from [8]), so we assume that the reader
has a copy of the former handy and we sketch the differences. Assume the theory of A is
unstable. Then by Theorem 5.5 it has the order property. The formula ψ witnessing the
order property satisfies [10, Properties 2.1] by Corollary 4.4. Therefore the analogues of [10,
Lemma 2.4, Lemma 2.5 and Proposition 2.6] can be proved by quoting their proofs verbatim.
Hence if U is a nonprincipal ultrafilter on N then κ(U) = λ (defined in [10, paragraph before
Lemma 2.5]) if and only if there is a (ℵ0, λ)-ψ-gap in AU .

By [8, Theorem 2.2], if CH fails then there are ultrafilters U and V on N such that
κ(U) 6= κ(V) and this concludes the proof. �

6. Concluding Remarks

In this final section we include two examples promised earlier and state three rather
different problems.

6.1. A non-axiomatizable category of C*-algebras. Recall that UHF, or uniformly
hyperfinite, algebras are C*-algebras that are C*-tensor products of (finite-dimensional)
matrix algebras. They form a subcategory of C*-algebras and the morphisms between them
are *-homomorphisms.

Proposition 6.1. The category of UHF algebras is not axiomatizable.

Proof. By Proposition 4.1 it will suffice to show that this category is not closed under taking
(C*-algebraic) ultraproducts. We do this by repeating an argument from Ge-Hadwin ([13,
Corollary 5.5]) exploiting the fact that UHF algebras have unique traces that are automati-
cally faithful.

Let A be the CAR algebra
⊗

n∈NM2(C) with trace tr, let U be a nonprincipal ultrafilter
on N, and let {pn} ⊂ A be projections with tr(pn) = 2−n. The sequence (pn) represents a
nonzero projection in AU , but trU((pn)) = 0. Thus trU is a non-faithful tracial state, so that
AU is not UHF. �

The same argument shows that simple C*-algebras are not axiomatizable.
Since every UHF algebra has a unique trace one could also consider tracial ultraproducts,

instead of norm-ultraproducts, of UHF algebras. However, such an ultraproduct is always a
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II1 factor ([15, Theorem 4.1]) and therefore not a UHF algebra (because projections in UHF
algebras have rational traces).

6.2. An unstable Banach algebra whose underlying Banach space is stable. The
Lp Banach spaces (1 ≤ p < ∞) are known to be stable ([1, Section 17]), and they become
stable Banach algebras when endowed with the zero product. Actually `p (1 ≤ p <∞) with
pointwise multiplication is also stable; this can be shown by methods similar to [10, Lemma
4.5 and Proposition 4.6]. We now prove that the usual convolution product turns `1(Z) into
an unstable Banach algebra, as was mentioned in §5.1.

Proposition 6.2. The Banach algebra `1 = `1(Z,+) (with convolution product) is unstable.

Proof. It suffices to show the order property for `1. This means we must give a formula
ϕ(x, y) of two variables (or n-tuples) on `1, a bounded sequence {xi} ⊂ `1, and ε > 0 such
that ϕ(xi, xj) ≤ ε when i ≤ j and ϕ(xi, xj) ≥ 2ε when i > j.

Let {fn}n∈Z denote the standard basis for `1, so that multiplication is governed by the

rule fmfn = fm+n. Also let `1 3 x 7→ x̂ ∈ C(T) be the Gel’fand transform on `1, so that f̂n
is the function [eit 7→ eint]. The Gel’fand transform is always a contractive homomorphism;
on `1 it is injective but not isometric.

We take ϕ(x, y) = inf‖z‖≤1 ‖xz − y‖, xi = (f1+f−1

2
)2i , and ε = 1

8
. Note that all the xi

are unit vectors, being convolution powers of a probability measure on Z, and x̂i = [eit 7→
(cos t)2i ] ∈ C(T).

For i ≤ j, we have ϕ(xi, xj) = 0 by taking z = (f1+f−1

2
)2j−2i .

For i > j, let t0 ∈ (0, 2π) be such that (cos t0)2j = 1
2
. For any z ∈ (`1)≤1,

‖xiz − xj‖`1 ≥ ‖x̂iẑ − x̂j‖C(T) ≥

∣∣∣∣∣
(

1

2

)2i−j

ẑ(eit0)− 1

2

∣∣∣∣∣ ≥ 1

4
,

where the middle inequality is justified by evaluation at t0. We conclude that ϕ(xi, xj) ≥ 1
4

as desired. �

Question 6.3. Is there a nice characterization of stability for Banach algebras?

It is obviously necessary that the underlying Banach space be stable. The proof of Propo-
sition 6.2 works for any abelian Banach algebra that contains a unit vector g such that
the range of ĝ contains nonunit scalars with modulus arbitrarily close to 1. (Above, g was
f1+f−1

2
.) So for instance the convolution algebra L1(R,+) is covered, and in fact any proba-

bility density will do for g in this case.

6.3. K-theory reversing automorphisms of the Calkin algebra. A well-known prob-
lem of Brown–Douglas–Fillmore ([5, 1.6(ii)]) asks whether there is an automorphism of the
Calkin algebra that sends the image of the unilateral shift to its adjoint. The main result
of [9] implies that if ZFC is consistent then there is a model of ZFC in which there is no such
automorphism. A deep metamathematical result of Woodin, known as the Σ2

1-absoluteness
theorem, essentially (but not literally) implies that the Brown–Douglas–Fillmore question
has a positive answer if and only if the Continuum Hypothesis implies a positive answer
(see [25]). The type referred to in the following question is the type over the empty set in
the sense of §4.3.

18



Question 6.4. Do the image of the unilateral shift in the Calkin algebra and its adjoint have
the same type in the Calkin algebra?

A negative answer to Question 6.4 would imply a negative answer to the Brown–Douglas–
Fillmore problem. A positive answer to the former would reduce the latter to a problem
about model-theoretic properties of the Calkin algebra. The Calkin algebra is not countably
saturated (first author, unpublished), but it may be countably homogeneous. For example,
its poset of projections is countably saturated ([14], see also [20]). Countable homogeneity
of the Calkin algebra would, in the presence of the Continuum Hypothesis, imply that
Question 6.4 has a positive answer if and only if the Brown–Douglas–Fillmore question has
a positive answer. It is not difficult to prove that the (model-theoretic) types of operators in
the Calkin algebra, and therefore the answer to Question 6.4, are absolute between transitive
models of ZFC.

6.4. Matrix algebras. We end with discussion of finite-dimensional matrix algebras and
a result that partially complements [10, Proposition 3.3], where it was proved that if the
Continuum Hypothesis fails then the matrix algebras Mn(C), for n ∈ N, have nonisomorphic
tracial ultraproducts.

Proposition 6.5. Every increasing sequence n(i), for i ∈ N, of natural numbers has a
further subsequence m(i), for i ∈ N such that if the Continuum Hypothesis holds then all
tracial ultraproducts of Mm(i)(C), for i ∈ N, are isomorphic.

Proof. The set of all L-sentences (see §2) is separable. Let Tn = Th(Mn(C)), the map
associating the value ψMn(C) of a sentence ψ in Mn(C) to ψ. Since the set of sentences is
separable we can pick a sequence m(i) so that the theories Tm(i) converge pointwise to some
theory T∞. Let U be a nonprincipal ultrafilter such that {m(i) : i ∈ N} ∈ U . By  Los’s
theorem, Proposition 4.3, Th(

∏
UMn(C)) = T∞. By Proposition 4.11 and the Continuum

Hypothesis all such ultrapowers are saturated and therefore Proposition 4.13 implies all such
ultrapowers are isomorphic. �

Question 6.6. Let ψ be an L-sentence. Does limn→∞ ψ
Mn(C) exist?

A positive answer is equivalent to the assertion that all ultraproducts
∏
UMn(C) are

elementarily equivalent, and therefore isomorphic if the Continuum Hypothesis is assumed
(see Proposition 4.11 and Proposition 4.13).
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